Optimal Narrow Spectral Bands for Precision Weed Detection in Agricultural Fields using Hyperspectral Remote Sensing

Sam Tittle
Seminar Presentation
11/17/2016

Committee
Rick Lawrence
Kevin Repasky
Bruce Maxwell
Outline

• Precision Weed spraying
 – How it works
 – Monitoring
 – Current Technology

• Spectral Profiles
 – Wide vs Narrow Bands

• Sensors
 – Multi vs Hyperspectral

• Research
 – Goals
 – Methods
 – Expected Results
Precision Weed Spraying

- Sensor activates solenoid
- Only Weeds are sprayed
Precision Weed Spraying

• Cost reduction to producers
• Environmental Benefits
 – Less runoff of herbicides
 – Built in weed monitoring
Monitoring

- Integration of GPS with sprayer can create a weed map.
- Allows year to year comparison
- Weed population dynamics
- Feedback on the management effectiveness
Current Technology

• Systems exist and are in use
• Examples WeedSeeker® and WEEDit®
• Most use active sensors
Issues

• System effective in fallow, pre-plant spraying, post-harvest weed control

• Hard to differentiate between crop and weed

http://www.weed-it.com/
Spectral Profiles

Wheat Profile

Visible

Red Edge

NIR

Green Bump

SWIR

Atmospheric H₂O
Spectral Profiles

- Similar spectral profiles
- Distinct differences
 - Green
 - IR
 - Red Edge?
Narrow and Wide Bands

• Wide Bands
 – Can limit differentiation of similar signatures
 – Multispectral sensors

• Narrow Bands
 – Gain high spectral resolution
 – Hyperspectral sensors
Sensor Differences

- **Multispectral**
 - Wide bands (20nm-100nm)
 - Different regions of spectrum

- **Hyperspectral**
 - Narrow bands (2nm-10nm)
 - Continues across spectrum
MultiSpec Vs Hyperspectral

Wheat Profile

ASD 2151 Channels

Pika II 80 Bands

Landsat 8 Multispectral Bands for comparison
MultiSpec Vs Hyperspectral

Vegetation curve derived from Landsat 8 Multispectral Bands
Sensors

• Current hyperspectral sensors cannot feasibly be mounted to tractors
 – Cost
 – Large Data sets
 – Sensor/computer pay load

• Solution
 – Fly with current hyperspectral technology and apply findings to on-tractor designs
 – Use hand held sensor for ancillary data
Sensors

• Pika II
 • Arial platform
 • ~0.5m pixels
 • Hyperspectral
 • 80 channels
 • 424nm - 929nm

• ASD
 • Back pack mounted
 • FOV 1m @ 2m
 • Hyperspectral
 • 2151 channels
 • 350 nm - 2500 nm

http://kestrelaerial.com/services/hyperspectral-scanning/
Optimal Band Selection

- Reduced data processing time
- Can apply it to future technology
Distance Metrics in Spectral Separability

- Point a single point on the spectral curve
- Spectral response for a band on one axis

![2D Scatterplot](image)
Distance Metrics in Spectral Separability

- Each band adds a dimension
Distance Metrics in Spectral Separability

• For multiple bands this can get very complicated

• Different metrics to quantify these distances
 – Euclidean
 • $D = \sqrt{\sum_{i=1}^{n} (d_i - e_i)^2}$
 – Divergence
 • Based on means and covariance
 – Transformed Divergence
 • Scaled version of divergence
 – Jefferies-Matusita
 • Mean, covariance, and natural log

http://sacred-activations.com
Goals

• Identify portions of the electromagnetic spectrum to identify weeds in dryland wheat.

• Analytical methods can be applied to other cropping/weed systems.
Questions

• Can narrow spectral band combinations identify weeds *in situ*, given the variability of plants?

• How many bands necessary?
 – Compare band combinations across multiply classification techniques

• Can a set of narrow bands be widened and still accurately identify weeds?
 – Wider bands can cut cost of sensors or filters.
Methods: Data Collection

• Tarps
 – Solution to roll, pitch, yaw
 – Used for Atmospheric correction

• Field Data
 – Azimuth, weed type, patch size, etc.

• GPS
 – Tarp and weed patch center
Methods: Processing

- Swaths – Georectified
- Combined using tarps and GCP
- Exported flat
- Combined and Exported
- Lab by Cooper McCann
- Exported to usable file format for analysis

False color IR Hyperspectral Image of wheat field
Methods: Analysis

• Extracted and combined spectral data from infested and un-infested locations
• Used 4 spatial distance metrics
• Used 11 classification techniques
• Compared using kappa statistic and McNemar’s test
Statistics

• Kappa z-test
 – Kappa measures agreement taking into account random chance of correct classification
 – Popular in the literature but though by some to be undesirable

• McNemar’s Test
 – Uses 2x2 matrix
 – Null states same proportion of pixels will be correctly classified by method 1 and method 2
 – Found to work with smaller samples than kappa

Expected Outcomes

• Answer to, does it work?
• Wider bands, cost efficient work
• Method that can be applied to other crop/weed systems
• Commercial collaborators can apply findings and methods to adapt sensors regionally
• Dead weeds
Special Thanks

- Rick Lawrence
- Kevin Repasky
- Bruce Maxwell
- Cooper McCann
- Joe Shaw - MREDI Optics & Photonics PI
- Tax payers of Montana
- State legislators

Questions??