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e Background: classic watershed modeling
= \\atershed-scale-modeling

« Watershed-data-analbysis

 Modeling beyond watersheds

e Future research

e Summary
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-- Spatial heterogeneity within watersheds
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— An Earth-Human system perspective

http://science.nasa.gov



physical representation of rivers

Atmosphere only Land and clouds “Swamp” ocean
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Simple rivers Veg. and atmo. chemistry
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Processes in generations of GCMs, from P. Edwards, 2011, WIREs Climate Chande



In earth system models

Typical example:
River Transport Model (RTM)
In Community Land Model (CLM, v4.0 and v4.5)

o Oversimplification of important riverine dynamics (e.g., River
Transport Model in Community Earth System Model)

— Lack of sub-grid heterogeneity representation
— Assuming constant, globally uniform channel velocity

* No representation of human impacts

* No representation of riverine energy and biogeochemistry
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Improving river

representation in
ESMs to help
better understand

and predict climate \

change dynamics
N /

* Modeling beyond watersheds
— Improving riverine dynamics
— Incorporating human component
— Using model as a tool to answer questions




Conceptualized River Network

Real River Network

Tributary

Main channel
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Model for Scale-Adaptive River Transport (MOSART)

» Hillslope routing:
B Account for impacts of overland flow on soil erosion, nutrient loading, etc.

» Sub-network routing:

B Scale adaptive across different resolutions to reduce scale dependence
» Main channel routing:

B Explicit estimation of in-stream conditions (velocity, water depth, etc.)
» Model streamflow and stream temperature

B Being extended to include river biogeochemistry 9
(Li et al. 2013; 2015 JHM; Li et al. 2016 JAMES)



To support application of MOSART
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CLM Hydrology MOSART Coupled CLM-MOSART

Simulation

Precipitation

}

Evaporation *

Transpiration

MOSART river flow — annual mean
Lol O

=
Throughfall
4 Evaporation

urface
Infiltration runoff
—

0 30E 60E 90E 120E 150E 180

baseflow ’ 0 10 50 100 500 1000 5000 10000

Water table —

(Li et al., JHM, 2015)

11



MOSART river llow — annual mean md,/ s
1 1 1

anKM [| | | | l
BON -
40N -
|
1
L —
q0E =
BOS = .-,n"h- - - =
- - =t} T c
L1y iy B B NI N EL S N R S M S S N L LA B LN LR
A0 150W j20W S90W B0W 30w i} A0k GOE 9QO0E 120E 150E 180

Global distribution of dams

0 0 50 100 500 1000 5000 10000
Rivers strongly affected by Human activities
1000000 —
-
100000 S
*’!’U' e

% 10000 ‘
P
=
= 1000
=
o 100 Qmean ensemble

10 AMF ensemble

L]
w = — — 1:1line
1 - : : : :
1 10 100 1000 10000 100000 1000000

Qobs (m?/s)

12



-- An Earth-Human modeling framework
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(Voisin et al., HESS, 2013; Li et al., JAMES, 2015)




Local water extraction: Reservoir operations:
reduce flow year round enhance summer low flow
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o Atotal of 1839 reservoirs in the US are represented
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improved streamflow simulation

NS coeff. w/o WM
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16 (Lietal., JAMES, 2015)



— An Earth-Human modeling framework
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-- Effects of reservoir regulation in large rivers
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 How does climate change influence water, energy, and their
connections?

 How does human intervention (mitigation, adaptation, and
management) alter climate change impacts?

 What are the regional characteristics of the above impacts
and their drivers?

19



Historical

emissions; LULC and water use \

No-mitigation scenario

RCP8.5
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Climate change Emission mitigation
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mitigation vs. water management
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Climate change effects Emission mitigation effects
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« Water management substantially reduces the likelihood of extreme
high stream temperature in western river basins by enhancing
summer low flows

Exceedance Probability of high stream temperature
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Water management reduces exceedance frequency

>
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Emission mitigation reduces
exceedance frequency

% change in number of hours with stream temperature > 27°C
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thermoelectric power production

e Estimated based on 177 once-through power plants, which
account for about 76% of once-through thermoelectric
power plants in the US

e Both emission mitigation and water management reduce
power loss from climate change at similar level

Loss (%) |RCP4.5_NAT |[RCP8.5 NAT RCP4.5 WM | RCP8.5_ WM

2040s 10.6 11.1 10.0 10.5

2080s 14.0 15.1 13.3 14.4
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thermoelectric power production

» There is no consistent difference in cooling water availability between RCP4.5
and RCP8.5 due to large inter-decadal variability in precipitation

» Water management consistently alleviates the duration of low water availability by

5%-14%
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Percentage of time when projected inflows (2040s and 2080s) are lower

than the historical average (1991-2000) during summer
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 How does climate change influence water, energy, and their connections?

— Warming increases stream temperature — reduces thermoelectric
power generation

— Warming has variable effects on regional precipitation and cooling
water availability

* How does human intervention (mitigation, adaptation, and management) alter
climate change impacts?

— Emission mitigation reduces warming, but its impacts on regional
water availability are variable

— Water management consistently alleviates high stream temperature
and reduces thermoelectric power generation loss

« What are the regional characteristics of the above impacts and their drivers?

— Regional drivers: local water extraction, reservoir regulations, and
water demand

— Impacts of different scenarios must account for LULC and water use
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e [Future research
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— overarching goal

Earth System  Hydrology System  Human System

Atmosphere Food
) )
Land Energy

Ocean Environment

Understand and predict multiscale nonlinear system behaviors of
water-food-energy-environment nexus
and their feedbacks to climate change dynamics 30



MOSART is adapted by putioutput: | __dataset |
National Centerfor |~~~ "~ l-
Atmospheric Research to be

part of new Community S MOSART
Earth System Model and

(CESM, NSF)

N / the riverine component of a
multi-million dollar10-year
modeling initiative:
Accelerated Climate Model \

" for Energy (ACME,
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Wenhua Wan
Visiting student from Tsinghua University, China

Working on hydrological drought under climate change and human
Interventions
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Yuan (Navy) Zhuang
Visiting student from Tsinghua University, China
Working on global streamflow and temperature simulations under

future climate, socio-economic and technologic scenarios
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Wondmagegn (Wondle) Ylgzaw'
Ph.D., Tennessee Tech University
Working on reservoir stratification module within MOSART
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Man Gao
Visiting student from Hohai University, China
Working on meta-analysis of macro-pore flow
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Dengfeng Liu
Ph.D., Tsinghua University
Working on modeling and data analysis of macro-pore flow
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Regional
scale or
larger

Watershed hydrology
beyond “"watersheds”
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Watershed boundaries adapted in CESM

Geosci. Model Dev., 7, 947-963, 2014 Geosci e B A
www. geosci-model-dev.net/7/947/2014/ eoscientific 3
doi:10.5194/gmd-7-947-2014 Model Development 2

& Auther(s) 2014. CC Atmribution 3.0 License. 2

cc) b

A subbasin-based framework to represent land surface processes in
an Earth syvstem model

T. K. Tesfa!, H.-V. Li’, L. R. Leung!, M. Huang’, V. Ke’, Y. Sun’, and Y. Liun!

Grid-based representation (CLM) Subbasin-based representation (DCLM)
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