INTRODUCTION

This study looks at the long-term effects of pea in rotation with wheat on soil carbon, nitrogen (N), and profitability. Although continuous pea-wheat systems are not recommended in Montana due to disease concerns, pea disease was not noted during the 14 years of this study. This fact sheet reports net profitability of wheat-only and wheat-pea cropping systems, as affected by high or low N availability. In the study’s 7th to 10th year (2009-12), a) pea-wheat was the most profitable system, b) pea-wheat systems had greater economic resilience than wheat-only systems under uncertain N fertility needs (because of uncertain precipitation) and wheat protein discount schedules, and c) managing N fertility at full recommended rates was most profitable for wheat-only systems (Miller et al., 2015). Here we look at 2013-16, to see if the findings are similar to the first 4 years, but lacking the 2010-11 wet period. An article on soil carbon response through the first 10 years of this study has been accepted for publication (Engel et al., 2017), and we will write fact sheets on the effects of cropping systems and N levels on soil carbon and N contents once those data have been processed.

METHODS

We report profitability of 7 cropping systems in a single-phase design from 2013 to 2016 (Table 1). The CRP-PgW system was a 10-year old perennial alfalfa/grass mixture converted to a pea-wheat rotation in 2013. All systems were managed as no-till except for the tilled fallow system. Pea hay was harvested and cover crops terminated on the same day, usually in mid-bloom, but earlier if weeds were problematic.

All variable inputs were accounted for, including fertilizer, farm machinery use, seed, and herbicides. Net returns to land and management are reported here. All crop insurance and other farm program aspects were ignored. Base wheat prices were the average of a 36-month marketing period centered on the harvest month (except 2016). Pea prices were also 36-month averages based on USDA ERS data for spring pea, and local quotes for Austrian winter pea. Pea hay was sold ‘on the stump’ and valued at $45/ton based on a 4-inch swathing height.

Protein discounts were based on reports from 42 Montana grain elevators. For spring wheat, the ‘flat’ protein discount was the average of the 7 lowest

<table>
<thead>
<tr>
<th>Cropping System</th>
<th>2013</th>
<th>2014</th>
<th>2015</th>
<th>2016</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Till Fallow (TF)</td>
<td>Fallow</td>
<td>Sp wheat</td>
<td>Fallow</td>
<td>W wheat</td>
</tr>
<tr>
<td>2. No-till Fallow (NTF)</td>
<td>Fallow</td>
<td>Sp wheat</td>
<td>Fallow</td>
<td>W wheat</td>
</tr>
<tr>
<td>3. Cont Wht (CW)</td>
<td>Sp wheat</td>
<td>Sp wheat</td>
<td>W wheat</td>
<td>W wheat</td>
</tr>
<tr>
<td>4. P_{grain} Wht (PgW)</td>
<td>Sp pea grain</td>
<td>Sp wheat</td>
<td>W pea grain</td>
<td>W wheat</td>
</tr>
<tr>
<td>5. P_{hay} Wht (PhW)</td>
<td>Sp pea hay</td>
<td>Sp wheat</td>
<td>W pea hay</td>
<td>W wheat</td>
</tr>
<tr>
<td>6. P_{cover} Wht (PcW)</td>
<td>Sp pea cover</td>
<td>Sp wheat</td>
<td>W pea cover</td>
<td>W wheat</td>
</tr>
<tr>
<td>7. CRP-PgW</td>
<td>Sp pea grain</td>
<td>Sp wheat</td>
<td>W pea grain</td>
<td>W wheat</td>
</tr>
</tbody>
</table>

Sp = spring, W = winter, Cont = continuous, Wht = wheat, P = pea

Table 1. Seven cropping systems grown at Bozeman, MT, 2013-2016.
protein discount years during 2001-12, while ‘steep’
was the average of the other 5 years. For winter wheat,
the ‘flat’ protein discount followed the 2014 and
2015 marketing years in Montana, while the ‘steep’
protein discount was based on October 2016 values.

Systems were split into high and low N fertility
strategies based on available N (soil + fertilizer N). The
high N rate was 3 lb of available N per bushel
of targeted yield, and the low N rate was half of that. Target
yields were 60 bu/acre for spring wheat and 90
bu/acre for winter wheat. Soil nitrate-N was measured
to a 3-foot depth prior to seeding wheat crops. An
overwinter N credit of 22 lb/acre was assumed for
fall soil nitrate-N measurements. Additional N credits
for pea either harvested as seed, harvested as hay,
or sprayed out as a cover crop, were 27, 40, and 54
lb N/acre, respectively based on observations from
2009-12 pea N contributions. A 6-foot no-till disk
seeder with disk coulters for fertilizer placement was
used, with 10.3-inch row spacing in odd-numbered
years, and 12-inch row spacing in even numbered
years. Urea N fertilizer was mid-row banded at time
of seeding. All crops received 5 lb N/acre, 23 lb
P₂O₅/acre, 22 lb K₂O/acre, and 8 lb S/acre in the
seed row except in the pea cover when no starter
fertilizer was used. Herbicides were applied as needed.

RESULTS
Average precipitation during 2013-16 at the MSU
Post Farm was 2.2 inches less than normal, ranging
from 5 inches below in 2013 to 0.5 inch below in
2014. Thus, these results reflect a climate pattern
when 14 inches is the average annual precipitation,
near the average of many Montana cropping regions.

We assessed 4 economic scenarios, high vs. low N
rates each with steep vs. flat discounts (Figure 1). The
pea-wheat (PgW) system had the greatest net returns,
totaling over $200/acre more for the 4-year period
than the next highest return. Across the 4 economic
scenarios, the greatest variation occurred for the
tilled fallow (TF) system, and least for the converted
CRP (CRP-PgW) system. Following 10 years of a
perennial alfalfa-grass mixture, seed yields of pea and
wheat were consistently lower than the PgW system,
including a 35% lower yield in winter wheat 4 years
after the conversion. However, the N supply from
that perennial legume dominated system consistently
produced higher wheat grain protein than in the PgW
system (e.g., 3.0 %-units greater in 2016), partially
offsetting decreased return from reduced yield.

In every year, despite some with much drier than
normal conditions, the high rate of N fertility increased
net returns, and summed $574/acre over 4 years when
averaged across all 7 cropping systems, compared
with $273/acre for the low rate of N fertility. However,
the difference between full and ½ N rates was much
greater when protein discounts were steep, rather than
flat. At full N, discounts had little influence on net
return in any system with pea or fallow, but strongly
influenced net return in continuous wheat. The 2009-
12 years had similar returns between ½ N and full
N in systems containing pea, possibly because the
2010 wheat year was much wetter than 2014 or 2016
favoring pea residue N release (Miller et al., 2015).

FIGURE 1. Net returns for 4 economic
scenarios representing both high (full N)
and low (1/2 N) fertility, and flat and steep
wheat grain protein discounts. See Table 1
for cropping system definitions.
FERTILIZER FACTS

- Pea-wheat provided the highest net returns, except when following 10 years of CRP.
- N fertilizer generally pays. The high rate of N fertilizer consistently provided the highest net returns.
- When discounts are flat, skimping on N might not be too bad, but when discounts are steep, don’t cut back on N.
- Pea-wheat systems had slightly less variation across 4 economic scenarios, compared with wheat-only systems. Nitrogen contribution from pea residue may be more important to wheat production in wet than dry springs.
- Stored N in the former alfalfa dominated CRP system likely increased grain protein to partially compensate for reduced yields and resulted in the least variation among 4 economic scenarios.
- The pea cover and pea hay systems produced similar net return as the fallow systems, despite higher management costs.

ACKNOWLEDGEMENTS

Operations for this study were funded by the Montana Fertilizer Advisory Committee, while senior personnel were supported by the USDA-NIFA Ag Experiment Station Project MONB00351 under 185726 and other accession numbers.

REFERENCES

Engel, R.E., P.R. Miller, B.G. McConkey, R. Wallander, and J.A. Holmes. 2017. Soil organic C changes to ten years of increasing cropping system intensity and no-till in a semiarid climate of the northern Great Plains. Soil Science Society of America Journal. (Accepted Dec 4, 2016)