Quiz for Nutrient Management Module No. 1. Soil Sampling and Laboratory Selection 1.5 CEU in nutrient management

- 1. In the example of nutrient variation within a field (Table 1), the soil sample with the highest nitrate-N concentration overestimated the average nitrate-N by approximately:
 - [] a. 30%
 - [] b. 80%
 - [] c. a factor of 2
 - [] d. a factor of 4
- 2. What is one negative consequence of using soil from only one location that has only 1 lb nitrate-N/acre, when the field's average nitrate-N amount was actually much higher?
 - [] a. The yield won't be optimized.
 - [] b. Too little fertilizer will be applied.
 - [] c. Too much fertilizer will be applied.
 - [] d. Lab costs will be higher.
- 3. Fields that appear heterogeneous based on color, past sampling, and yields, should:
 - [] a. have more samples collected than more homogenous fields
 - [] b. have fewer samples collected than more homogenous fields
 - [] c. be sampled both fall and spring
 - [] d. be sampled at least 2 feet deep for N, P and K
- 4. Zone sampling
 - [] a. is always recommended over grid sampling.
 - [] b. divides a field into areas based on topography and intended crop.
 - [] c. uses a combination of the following: soil slope, color, texture, and depth to subdivide a field into zones.
 - [] d. can be based on published soil survey maps without regard for yield patterns on the field.
- 5. A laboratory that provides highly accurate, but not very precise results
 - [] a. provides results that consistently overestimate the fertilizer required.
 - [] b. provides results that are consistent from one test to the other, but might not be close to the 'true' value.
 - [] c. provides results that are a scattering of above and below the 'true' value.
 - [] d. provides results that consistently underestimate the fertilizer required.
- 6. Why is nitrate often sampled up to 3 feet depth, whereas P and K are sampled to much less depth?
 - [] a. More nitrate is taken up by crop than other nutrients.

- [] b. There is generally no P or K below 6 inches.
- [] c. Nitrate is more mobile and deep nitrate can therefore be accessed by roots throughout the profile, whereas P and K fertilizer generally can't move very far.
- [] d. P and K are rarely, if ever, top-dressed.
- 7. Sampling before and as close to fertilizer application as possible is highly recommended, yet not always practical. Which of the below is a good reason to sample in the fall, well before seeding and application?
 - [] a. There can be significant lag times between submitting a soil to a laboratory and receiving fertilizer recommendations.
 - [] b. Wet or frozen spring soil samples do not provide valid N test results. The ground may be too wet prior to seeding.
 - [] c. Fall soil tests for S are needed to base sulfate fertilizer needs.
 - [] d. Available nutrients in the fall are a better indicator of fertility than in the spring.
- 8. Why should soils collected for available nutrients not be oven dried above 120 °F?
 - [] a. It will kill microorganisms.
 - [] b. It will evaporate too much water.
 - [] c. It may change the availability of some nutrients.
 - [] d. It breaks down all of the organic matter.
- 9. If the producer has equipment capable of variable rate fertilizer application, why might you want to submit individual rather than composited soils on this producer's fields?
 - [] a. Nutrient levels averaged from individual samples are far more accurate than a composite.
 - [] b. To allow more fine tuning of application amounts
 - [] c. Because many individual samples only need to be six inches deep and are easier to collect than composites made up of 3-feet deep cores
 - [] d. Because P and K are more variable in their distribution on the field than N
- 10. Analytical results from the same soil sample submitted to various laboratories:
 - [] a. will be almost identical between laboratories
 - [] b. will not vary with procedure
 - [] c. can be highly dependent on the laboratory selected
 - [] d. will lead to identical fertilizer recommendations
- 11. Obtaining Quality Assurance/Quality Control (QA/QC) protocols and results can help one select a good laboratory. What should a good QA/QC plan evaluate?
 - [] a. precision and accuracy of results
 - [] b. laboratory personnel

- [] c. time to complete procedures
- [] d. relative costs of different fertilization philosophies
- 12. Fertilizer recommendations are based on different 'approaches', which include:
 - [] a. sufficiency approach that recommends fertilizer rate that maintain soil levels above critical levels
 - [] b. maintenance approach that recommends fertilizer to replace nutrients removed by crops
 - [] c. build approach which is only used at high soil test levels
 - [] d. sufficiency approach which provides just enough nutrients to replace those removed by a crop
- 13. To help laboratories make accurate fertilizer recommendations, producers should:
 - [] a. supply a yield goal that reflects the soil type and area climate
 - [] b. supply the maximum yield goal the field could support
 - [] c. provide precipitation data so the lab can provide a yield goal
 - [] d. provide yields from the prior cropping season
- 14. Spring soil samples are preferable to fall soil samples:
 - [] a. to get accurate soil organic matter estimates
 - [] b. for results that better estimate growing season N availability
 - [] c. following dry, cold winters
 - [] d. to allow time for P and K fertilization
- 15. There are no hard and fast rules on number of samples to submit per acre. However,
 - [] a. 5 sub-samples composited into 1 sample are a good starting point for a homogenous 80-acre field.
 - [] b. sampling for K requires many more sub-samples than sampling for N and P.
 - [] c. fields with fertilizer applied in bands, or no-till fields tend to require more sub-samples.
 - [] d. in a field with visual differences, it is better to composite many subsamples from across the field than partition the field into separate zone.