## **Highwood Field Day, June 20, 2018** Hosted by MSU Extension and Central Ag. Res. Center

## Post Farm Field Day, July 13, 2018 Cropland soil acidification

By Clain Jones, MSU Soil Fertility Extension Specialist; <u>clainj@montana.edu</u>, 994-6076, <u>http://landresources.montana.edu/soilfertility</u> for more information. Thanks to Adriane Good, Jesse Fulbright, Dale Krause, and Tyler Lane for measuring pH in their counties.

- 1. Low pH soils have been found in many regions of MT (Fig. 1).
  - pH < 5.0 about where aluminum toxicity starts
  - pH < 4.5 often noticeable poor germination
  - pH < 4.0 crop failure

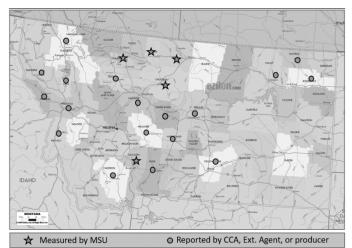



Fig. 1. Counties with at least one field having pH < 5.5. Symbol is not at location of field(s).

## Any surprises on map?

 N fertilization contributes to soil pH drop. N fertilizer sales have increased greatly (Fig. 2). Soil pH is low in the top few inches of soil, where N fertilizer is placed (Fig. 3).

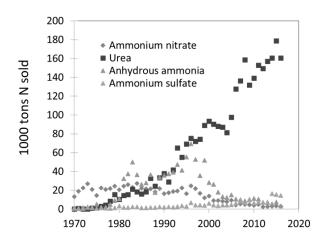



Fig. 2. N fertilizer sales in the MT.

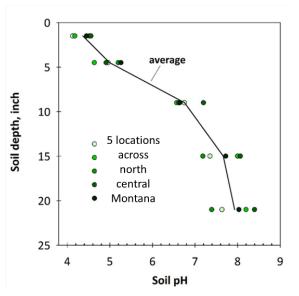



Fig. 3. Chouteau County pH stratification in no-till fields. Engel unpub. data.

## 3. N rate affects soil pH drop.

- 14 years of N fertilization west of Bozeman (Fig. 4).
- 6 years of N fertilization near Big Sandy (Fig. 5). Why differences in pH drop/lb N?

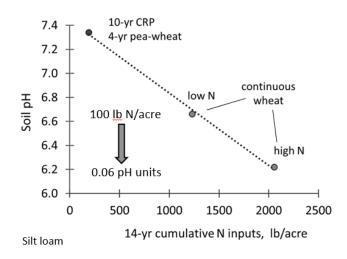



Fig. 4. Soil pH (top 4") after 14 years of N fertilization on dryland <u>at Post Farm</u>. Engel et al., unpub. data.

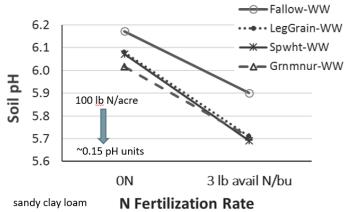
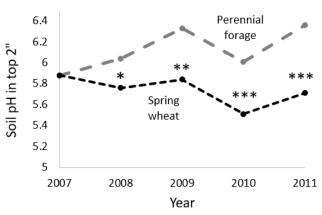




Fig. 5. Soil pH (top 3") after 6 years of N fertilization under different dryland cropping systems near Big Sandy. Jones and Miller, unpub. data.

- 4. Perennial forages can help increase soil pH (Fig. 6).
- 5. Take home messages on prevention: Scout and soil sample to know if have problem or not. If all fields > 7.5, feel fortunate. Otherwise:
- Reduce N rate when possible (perhaps by shifting away from HRWs, consider pulses)
- Use N more efficiently: by soil testing, apply lower N rates in areas limited by resource other than N, make sure have adequate P, K, S and micros, split application with conservative pre-plant



crops differ with \* > 90%, \*\* > 95%, \*\*\* > 99% confidence

Fig. 6. Soil pH over 5 years on dryland spring wheat vs perennial forage with similar N rates near Mandan, ND (Liebig et al. 2018).

- rate and top-dress if adequate moisture, apply N close to peak plant uptake
- Consider using less acidifying N source (CAN), non-acidifying N source (Ca nitrate), manure, or legumes in rotation
- Add perennials to rotation (list of acid-tolerant varieties provided on our Acidification website <u>http://landresources.montana.edu/soilfertility/acidif/index.html</u>)