Cover Crop Effects on Soil Quality and Subsequent Yield

Ag Agent Update April 30, 2015

C. Jones, P. Miller, S. Tallman, M. Housman, A. Bekkerman, and C. Zabinski

Dept. Land Resources & Environmental Sciences

Today's objective

Present soil quality and yield results from two MSU plot studies

Study 1: Cover crop cocktails, one 2year cycle, four site years

- Objective: Determine effects of "functional groups" within mixed cover crops on yield and soil health
- All terminated with herbicide at first pea bloom

Methods

Study Sites

3 on-farm conventional 1 university land

3 yr minimum no-till

Year	Amsterdam, Conrad	Bozeman, Dutton
2012	cover crop	
2013	wheat	cover crop
2014	cover crop	wheat
2015	wheat	cover crop

Plant Functional Groups & Species

Plot Study: CCM Phase 4 farms including 2 in Golden Triangle

REP 4	401	402	403	404	405	406	407	408	409	410	411
	Minus	Nitrogen	Fibrous	Minus	Full	Тар	Minus	Pea	Brassicas	Fallow	Minus
	Brassica	Fixers	Roots	N Fixers	Mix	Roots	Fibrous				Тар
	8	6	5	10	1	3	9	2	4	11	7
	301	302	303	304	305	306	307	308	309	310	311
RFP 3	Minus	Nitrogon	Minus	Minus	Boo	Brassicas	Full	Minus	Tan	Fallow	Fibrour
	Tibrous	Fivers	Bressies	Ten	rea 2	Diassicas	Pull Naiw	NEwara	Deete	11	Pooto
	Fibrous	Fixers	Brassica	тар	2	4	IVIIX	IN FIXERS	ROOTS	11	ROOTS
	9	6	8	7			1	10	3		5
	201	202	203	204	205	206	207	208	209	210	211
	Pea	Brassica	Minus	Full	Minus	Fallow	Minus	Fibrous	Тар	Nitrogen	Minus
REP 2	2	4	N Fixers	Mix	Тар	11	Fibrous	Roots	Roots	Fixers	Brassica
			10	1	7		9	5	3	6	8
	101	102	103	104	105	106	107	108	109	110	111
	Fibrous	Minus	Minus	Тар	Minus	Nitrogen	Fallow	Full	Minus	Pea	Brassica
	Roots	Fibrous	N Fixers	Roots	Brassica	Fixers	11	Mix	Тар	2	4
RFP 1		0	10	2	0	6		1	7		
	>	9	10	3	0	0		1			

Treatments

- Summer fallow
- Pea
- N fixers (NF)
- Taprooted (TR)
- Fibrous rooted (FR)
- Brassica (BR)
- Full (all 8 spp)
- Minus NF
- Minus TR
- Minus FR
- Minus BR

2013 Cover Crop Biomass at Dutton

Increasing diversity did not appear to importantly increase biomass when combined with Bozeman data

Effect of cover crop treatment on spring wheat grain yield at Dutton (2014)

Effect of cover crop treatment on spring wheat grain yield at Dutton (2014)

Spring wheat yield at Dutton vs previous year total biomass (cc + weed)

Potentially Mineralizable Nitrogen

Tallman, Housman, et al., unpub data

Preliminary Results

Microbial Biomass

2013 Soil Temperature study (2")

Cover crops terminated on 5 July

Jones, Miller, et al. unpublished

Summary after first full rotation

	Amsterdam	Conrad	Dutton	Bozeman
CC Biomass	ns	ns	ns	ns
Micro Biomass	ns	ns	CCrop>fallow	CCrop>fallow
Enzymes (5 total)	ns	ns	8 spp>Pea (1 enzyme)	Ccrop>fallow (1 enzyme)
PMN	CCrop>fallow	Pea>6 spp	CCrop>fallow	ns
Mychorrhizal infectivity pot.	ns	ns	ns	ns
Olsen P	ns	ns	Not analyzed	Not analyzed
Max daily temp			fallow>CCrop	fallow>CCrop
Penetration resistance*	ns	Pea>6 spp	ns	ns

ns – no significant difference between 8 species (full mix) and pea

* - penetration resistance less for fallow than CCs at Dutton and Conrad, likely due to higher water content, not less compaction so only CCs compared.

Study 2: Eight-year, plot study

- Objective: Determine long-term effects of legume-containing rotations vs. fallow on subsequent wheat mainly in no-till.
- ~16 inch annual precip. (4 miles west of Bozeman)
- Pea forage grown in 2003, 05, 07 and pea CC ("legume green manure", LGM) grown in 2009, terminated at full pod
- Spring or winter wheat planted in even years. 2010 was wettest of wheat years, 2012 record drought.
- 2 N rates: Full (3 lb available N/bu) and ½ N
- NO differences in wheat yield following CC and following fallow in 2004, 2006, 2008, and 2012, and large benefit of CC in 2010.

Potentially mineralizable N (PMN) Cover crop-wheat vs fallow-wheat (April of 8th yr)

Study 2 Economics (2009 – 2012)

4 yr Average Discounted Present Value of

Conclusions

- In short term (1 CC-cycle studies), grain yield and protein were generally equal or less than after fallow.
- Early termination (by ~ first pea bloom) is key to preventing yield and protein losses.
- In short term studies, there does not appear to be yield or soil quality advantages of multiple species mixes over pea.
- In long term (4+ cycles), yield, protein, and net revenue can be greater after cover crops than fallow, especially at low N rates, likely from greater PMN.
- Cover crop value to soil health, subsequent crops, and possibly land value is expected to increase over time in Montana.

Acknowledgments

- USDA AFRI
- USDA WSARE
- NRCS CIG
- Montana Fertilizer Advisory Committee
- Montana Wheat and Barley Committee
- Numerous landowners
- Ann McCauley
- Jeff Holmes

Questions?

For additional information on soil fertility topics including information on cover crops, see http://lanckesources.montana.edu /soilfertility