#### **Canola Soil Fertility Management**

Image by Sophia Flikkema

EXTENSION

#### Northeast Montana Pulse Plot Tour, June 30, 2017 Valley County Extension

#### by Clain Jones, Soil Fertility Specialist (<u>clainj@montana.edu</u> 994-6076) and Kathrin Olson-Rutz, Research Associate



Martin Charles and States

College of Agriculture ピ Montana Agricultural Experiment Station



#### Why am I giving a CANOLA talk in a PULSE workshop?

- I've presented on pulse fertility at this Pulse Plot tour before
- Planned canola acreage increased this year
- Nutrient management of canola is quite distinct from both small grains and pulses
- Shel asked me to <sup>(2)</sup>

#### Question for you: Why are there relatively few acres of canola in MT?



We will discuss the following:

- 1. General soil preferences
- 2. How canola needs differ from small grain
- 3. Nutrient considerations for canola in rotation
- 4. Soil fertility management using the right rate, source, timing and placement

### Optimum soil conditions for canola

- 1. Soils with adequate infiltration and aeration
- Low to moderate sodium and salt content (up to 6 mmhos/cm before yields decline) = similar to small grains, far more tolerant than pulses
- 3. Minimal tillage, continuous and high diversity rotations to keep residue on surface preventing crusting, and interrupt disease cycles

## Goal of soil fertility management

Synchronize nutrient supply (amount and timing) from soil and fertilizer, with plant nutrient demand. However there are:

#### Sources of variation

- Cultivars
- Soil variability
- Soil & tissue testing methods and labs
- Rate of nutrient supply from fertilizer & SOM
- Weather

#### Additional unknowns

- Fertilizer use efficiency
- Nutrients lost to water, air and soil erosion

### Use the 5 R's to aim for the best results

#### 5 R's of fertilizer management

- 1. Rotation
- 2. Rate
- 3. Source
- 4. Timing
- 5. Placement



# Soil nutrient considerations for crop rotations that include canola

| Nutrient       | Consideration                                                                                                                                      |
|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| Nitrogen (N)   | Can be provided by a legume                                                                                                                        |
| Phosphorus (P) | Canola and alfalfa are good P scavengers, deplete P for next crop                                                                                  |
| Potassium (K)  | Canola leaves behind high K residue                                                                                                                |
| Sulfur (S)     | Canola is a good scavenger, depletes S for next crop                                                                                               |
| Other          | Canola can reduce P, copper (Cu) and zinc (Zn)<br>uptake by subsequent mycorrhizal crops (e.g., flax,<br>legumes, small grains to a lesser extent) |

#### Canola relative yields after other crops Based on research at Mandan, ND, average over 4 rotations

|                         | Crop to be grown |             |        |                         |
|-------------------------|------------------|-------------|--------|-------------------------|
| Residue                 | SW, Barley       | Pea, Lentil | Canola | Sunflower,<br>Safflower |
| SW, Barley              | 1.00             | 1.19        | 1.09   | 1.81                    |
| Pea, Lentil             | 1.02             | 1.00        | 1.16   | 2.04                    |
| Canola                  | 0.99             | 1.00        | 1.00   | 1.67                    |
| Sunflower,<br>Safflower | 0.95             | 0.99        | 1.00   | 1.00                    |
| Average                 | 0.96             | 1.05        | 1.04   | 1.67                    |

Adapted from Tanaka et al., 2005 and 2007, by K. McVay

#### **Questions?**

## On to tools to determine fertilizer needs and deficiencies

### Start with a realistic yield goal

- Use MSU's NARC variety trials (<u>http://agresearch.montana.edu/narc/varietytestingreports/</u> <u>variety testing reports by year.html</u>), or successful local producers' experience
- Past yields indicate future performance
- Having ability for in-season N application allows conservative yield estimate for pre-plant rate
- Then look up how much is needed to produce a bushel of seed:

(soil + in-season organic matter decomposition + fertilizer)

#### How much fertilizer is removed by canola plant and a bushel of canola seed?



### Next step: soil testing

- Help calculate fertilizer rates
- ID nutrient deficiency or imbalance
- Save on fertilizer cost
- Decrease environmental risks
- Take to 2 ft depth for N and S, 6" for P and K
- Consider sampling N to 3 ft if didn't reach yield goal on previous crop or two



Ideally soil test in spring; fall soil tests can lead to over or under-fertilized fields



Compare fall with spring a few times to see patterns of loss or gain for given pastures/rotation

Variable rate N application (Zone or site specific farming)

- At this time economic advantage is inconsistent (and hard to study)
- Is best to divide field into zones of low, med, high productivity
- NDSU has bulletin series on Zone farming SF1176 series at <u>www.ag.ndsu. edu/publications</u>





Image adapted from IPNI 2012

#### Tissue tests and optical sensors

Tissue sufficiency: levels are published, but too much variation in cultivars, plant growth stage, time of day to make reliable nutrient management decisions based solely on tissue testing.

Optical sensors: the technology is here, the correlations between sensor readings and N fertilization recommendations not yet for MT



Plant symptoms – once symptoms appear, yield may already be compromised

#### **Boron**



R. Karamanos

#### Phosphorus



IPNI, El Gharous

#### Nitrogen



GRDC Canola Guide

#### Potassium



IPNI, Roberts

#### Sulfur



Gov. W. Aust., T. Potter

#### Sulfur



R. Karamanos

#### Questions?

#### On to calculating fertilizer rates

### N rate adjustments

- Stubble: small grains stubble high carbon to N (C:N). Adjust fertilizer N up or down?
   10 lb N/1000 lb stubble up to 40 lb N
- Fallow: assume ½ of stubble has decomposed over previous year when adjusting
- SOM: 15 20 lb N credit per % >2%
- After legume rotation: Adjust fert up or down? Legumes credit (add) N

| Crop                  | N credit<br>(lb N/acre) |
|-----------------------|-------------------------|
| Pulse grain 1-2 x     | ~10                     |
| Pulse grain ≥ 3 x     | ~20                     |
| Pulse cover 1-2 x     | 20-30                   |
| Pulse cover $\ge$ 3 x | 30-50                   |
| Alfalfa               | 40                      |

#### Example N rate calculations depending on previous crop

|                                                     | Spring<br>wheat | Grain pulse<br>grown 1x | Legume cover<br>crop grown 1x |
|-----------------------------------------------------|-----------------|-------------------------|-------------------------------|
| Canola yield goal<br>(bu/ac)                        | 18              | 20                      | 23                            |
| Total soil N<br>recommended<br>(bu/ac x 3.25 lb/bu) | 58              | 65                      | 75                            |
| Spring soil N (lb/ac)                               | 20              | 35                      | 50                            |
| N credit (lb/ac)                                    | 0               | 10                      | 25                            |
| Fertilizer N (lb/ac)                                | 38              | 20                      | 0                             |

Canola can only respond to N if S is not limiting; S helps most when N is sufficient



Open pollinated variety, N and S broadcast and incorporated just prior to seeding. Malhi et al., 2007



 Base S rate on field history, crop appearance, response to test strips, tissue & soil testing.



S deficiency image by R. Karamanos

- S varies greatly across a field but if <20 lb S/acre (to 2 ft. depth) then likely limiting
- 18-20 lb S broadcast at seeding or 9 lb S/acre w/seed (BEWARE – very sensitive to seed placed fertilizer)
- 0.5 lb S/bu yield potential as 8-0-0-9, 21-0-0-24, or 12-0-0-26 (amm thiosulfate) as an in-season rescue through rosette (Janzen and Bettany, 1984)

#### P and K guidelines depend on soil test levels and do not vary with yield potential

Banded P and K fertilizer guidelines

| Olsen P (ppm) | $P_2O_5$ (lb/acre)                       | K (ppm) | K <sub>2</sub> O (lb/acre) |
|---------------|------------------------------------------|---------|----------------------------|
| 0             | 45                                       | 0       | 45                         |
| 4             | 40                                       | 50      | 40                         |
| 8             | 35                                       | 100     | 35                         |
| 12            | 30                                       | 150     | 30                         |
| 16            | 25                                       | 200     | 25                         |
|               | $0.9 \text{ lb P}_2\text{O}_5/\text{bu}$ | 250     | 20                         |
| >16           | or 10 lb/ac<br>w/seed                    | > 250   | 0.5 lb K <sub>2</sub> O/bu |

More if surface broadcast, especially at low soil levels Application rates depend on source, placement and timing (coming later)

## Can soil fertility affect canola maturity?

- Starter P important for an early start
- Excess N slows maturity, especially in dry years or with delayed seeding



 Sufficient S needed before elongation stage for earlier maturity, insufficient S extends flowering period
 (Janzen & Bettany, 1984, greenhouse study)

#### Questions?

#### On to Source

#### N source

Select readily available N, e.g., urea (46-0-0) vs. 28-0-0 or 32-0-0 based on:

- \$/lb N
- ease of application
- leaf burn potential
- seed-placed safety
- potential leaching or volatilization loss to the air

|                                                | <b>POTENTIAL</b> loss compared to urea |          |  |
|------------------------------------------------|----------------------------------------|----------|--|
| Source*                                        | Volat.                                 | Leaching |  |
| AN, CAN, AS                                    | less                                   | ≈        |  |
| UAN                                            | less                                   | ~        |  |
| +NBPT (Agrotain, ContaiN,<br>Arborite Ag)      | less                                   | ~        |  |
| +nitrification inhibitor<br>(Nserve, Instinct) | ~                                      | less     |  |
| Combo (SuperU)                                 | less                                   | less     |  |
| Polymer coated (ESN)                           | less                                   | less     |  |
| Slow release (Nitamin)                         | ~                                      | less?    |  |
| * Examples given do not imply endorsement      |                                        |          |  |

\* Examples given do not imply endorsement

See Crop and Fertilizer Management Practices to Minimize Nitrate Leaching (MT201103AG) Management to Minimize Nitrogen Fertilizer Volatilization (EB0209)



- Polymer coated are safer seed-placed than urea
- PCU release is too slow in cool, dry conditions to provide enough N early on – consider blending

## S source and timing to benefit seed yield

-

|                                                 | 2-plus years<br>prior | Prior crop | Fall | Spring, before<br>or at seeding |
|-------------------------------------------------|-----------------------|------------|------|---------------------------------|
| Sulfate –<br>on soil surface<br>or incorporated | 8                     | -          | -    |                                 |
| Elemental-S incorporated                        |                       | -          | 8    | 8                               |
| Rapid release<br>elemental-S                    | ~                     | -          | 0    | 8                               |









#### P source

- MAP vs DAP (11-52-0 vs. 18-46-0) base on: \$/lb P<sub>2</sub>O<sub>5</sub>, ease of application, seed-placed safety
- Specialty P: inconsistent results, higher safe seed-row rates, simplifies application and saves time
- Specialized bacteria/amendments: may increase nutrient availability, inconsistent yield response. Use on-farm strip trials and common sense to evaluate.
- Animal manure: excellent source of P, K, micros. More P and K relative to N than plants need. Concentrations vary, beware of herbicide residue.

## Phosphorus source for seed row placement

- MAP < 5-20 lb P<sub>2</sub>O<sub>5</sub>/acre seed placed
- DAP use CAUTION = toxic to seedlings
- Liquids equally potent as MAP, but close proximity of band to seed = higher risk to seed (Grenkow et al., 2013).



 Coated specialty P – 2x safe seed placed rate, unsure on ability to provide needed P (Qian and Schoenau, 2010; Grenkow et al., 2013, SK)

#### **Questions?**

#### On to Timing and Placement

Application timing – depends on source. Fertilizer needs to become 'plant available' but not be lost from system.

N: Ideally split application, 50 to 65% of N at seeding, remainder adjusted to current production potential by 5- to 6-leaf stage.

S: Rescue broadcast or foliar up to early flowering, followed by rain/irrigation. Foliar after 5<sup>th</sup> leaf emergence to minimize leaf burn.



P and K: before or at seeding

## Placement: N

- side or pre-plant band >2" deep prior to packing
- early-spring broadcast with incorporation
- if seeder can't place N deep, consider NBPT (e.g., Agrotain<sup>®</sup>)
- 28-0-0, 32-0-0
  better subsurface
  than surface band



Dick, Nebo, Holzapfel, Tenuta, unpub data courtesy Karamanos

#### Placement: P and K

P: critical close to seedling roots in first 2-6 weeks

- Especially in cool or dry soil even if Olsen P > 16 ppm, 10-15 lb P<sub>2</sub>O<sub>5</sub>/acre seed placed or side band
- If more P required sub-surface side band next to seed, broadcast incorporate before seeding, build with prior crop

K: seed-placed K<sub>2</sub>O + N <u>not</u> > 10 lb/acre (4 lb/acre in sandy soils) affects ability to seed-place P, since 10 lb P<sub>2</sub>O<sub>5</sub> as 11-52-0 = 2 lb N

Ex: If 8 lb  $K_2O/acre$  seed-placed, only allows 10 lb  $P_2O_5/acre$  as 11-52-0 seed-placed. More important P close to the seed than K close to seed

## Seed-placed guidelines

Seed row safe rates depend source and seed bed conditions

- heavy clay soil >> coarse
- high SOM >> low SOM
- high moisture >> dry soils
- low pH >> high pH



Nyborg & Henning 1969, AB and SK

#### Equipment

Use wide openers, or put fertilizer in knife and seed in fertilizer slot

Use SDSU/IPNI online safe seed-placed rate calculator

#### Micronutrients

- A combination of deficiency symptoms, soil testing, and tissue testing may be best approach at identifying deficiencies. This is NOT an exact science.
- Micronutrient deficiencies are exception, not rule
- Cool wet conditions cause deficiency likely disappear when weather warms
- Too much of some micros can hurt yield more than not enough
- The main challenge is even distribution of a very small quantity – consider foliar options, but likely can't apply enough to correct severe deficiencies

#### Relative response to micronutrients

| Response to micronutrient (Karamanos 2000) |                            |        |     |        |  |
|--------------------------------------------|----------------------------|--------|-----|--------|--|
| Boron                                      | Copper Iron Manganese Zinc |        |     |        |  |
| Medium                                     | Medium                     | Medium | Low | Medium |  |

Routine application is NOT suggested, focus on N and seeding rate before other amendments (Harker & Harman, 2017, AB, SK)

Best test is field test strips and measured yield response

"Micronutrients should be used when there is an economic benefit to the farmer, ....." – R. Karamanos

#### Summary

- Use soil tests
- Ensure nutrients are available before stem elongation
- Adjust N in-season to reflect the growing season
- Need adequate S to ensure N response
- Low rates of seed-placed P and S promote a healthy start
- Select appropriate timing & placement for given fertilizer source
- Beware of seed-placed fertilizer toxicity
- Consider pulse crop rotation before canola

For more information and this presentation see MSU Soil Fertility Website

http://landresources.montana.edu/soilfertility/

*Soil Nutrient Management for Canola* (EB0224) – under 'Extension publications'

Canola: Nitrogen & Sulfur Management and Canola: P, K, & Micronutrient Management – both under 'Soil Scoop'

Canola Council of Canada *Canola Encyclopedia* <u>http://www.canolacouncil.org/canola-encyclopedia/</u>

Safe seed-placed fertilizer rate calculator: SDSU and IPNI Online Fertilizer Damage Tool <u>http://seed-damage-calculator.herokuapp.com/</u>





## QUESTIONS?



<sup>College of</sup> Agriculture & Montana Agricultural Experiment Station





EXTENSION