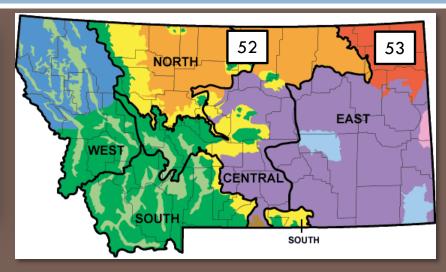
COVER CROP COCKTAILS

USING MULTI-SPECIES COVER CROP MIXTURES TO IMPROVE NO-TILL SOIL QUALITY IN LOW RAINFALL AREAS OF THE NORTHERN PLAINS


Susan Tallman, CCA MSc Candidate

The Summerfallow Challenge

MT NRCS

- + Soil moisture recharge
- Saline seeps
- N leaching
- Erosion
- Organic matter
- Soil quality

MT NRCS

Decrease in Summerfallow Acres

1971: 42 million acres

2010: 10 million acres

Tanaka et al., 2010

MLRA 52: 84% of cropland

MLRA 53: < 40% of cropland

NASS, 2010

Cover Crops as a Solution

Photos courtesy of BCSCD, Bismarck, ND

Example 1

Decrease N leaching on sandy soils

July – Oct.

- Millet
- •Cowpea
- Soybean
- •Turnip
- Radish
- Sunflower
- Sweet Clover

Example 2

Increase OM on field previously used for corn silage

May - July

•Oat

•Turnip

•Pea

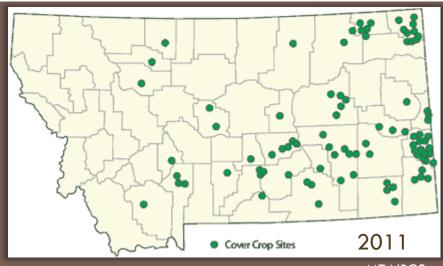
- •Red Clover
- Radish
- Hairy Vetch

Benefits of Cover Crop Cocktails

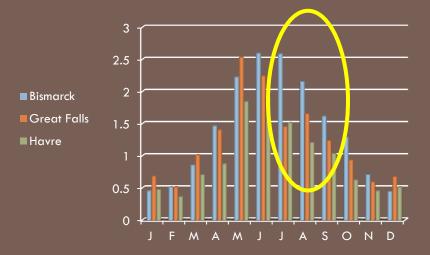
- Decrease N leaching
- •Increase OM
- Decrease herbicide use
- •Cattle forage/Corn silage replacement
- •Improve soil nutrient availability

www.attra.org
www.bcscd.com

Gabe Brown


- •No-till since 1993
- Cover crop cocktails
- •Intensive rotational grazing
- Intercropping
- •Reduced herbicide: 75%
- •Reduced fertilizer: 90%

Can cover crop cocktails work in Montana?


Annual Precipitation (in)

BIS	MARCK	GREAT FALLS	HAVRE
J	0.45	0.68	.47
F	0.51	0.51	.36
М	0.85	1.01	.70
Α	1.46	1.4	.87
М	2.22	2.53	1.84
J	2.59	2.24	1.90
1	2.58	1.45	1.51
Α	2.15	1.65	1.20
S	1.61	1.23	1.03
0	1.28	0.93	.62
N	0.70	0.59	.45
D	0.44	0.67	.51
TOTAL	16.84	14.89	11.46

NOAA, 30 year average

MT NRCS

Research Questions

- 1. How might a cover crop mixture affect both soil water use and soil quality compared to both summerfallow and a single species legume cover crop?
- 2. How will a cover crop mixture affect the following year's grain yield, quality, and economic return compared to both summerfallow and a single species legume cover crop?
- 3. What does each plant functional group in the mixture contribute to overall soil quality?

Study Design: 2 Approaches

Plot Study

- 4 no-till sites
- April June growth
- Herbicide termination
- 3 year rotationCCM wheat CCM

Farm Study

- 4 to 6 no-till farms
- 2 year rotation: CCM wheat
- Farmers select species and timing

Plot Study Functional Groups & Species

Nitrogen Fixers

Spring Pea
Pisum sativum

Common Vetch Vicia sativa

Fibrous Root

Oats
Avena sativa

Italian Ryegrass
Lolium multiflorum

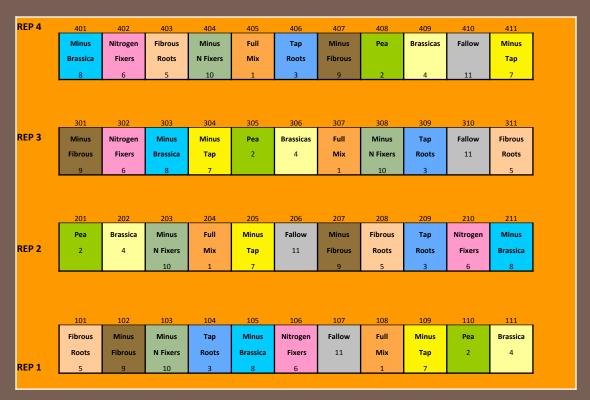
Tap Root

Safflower
Carthamus tinctorius

Purple Top Turnip Brassica campestris

Brassica

Daikon radish Raphanus sativu



Camelina Sativa

Plot Study: Treatments

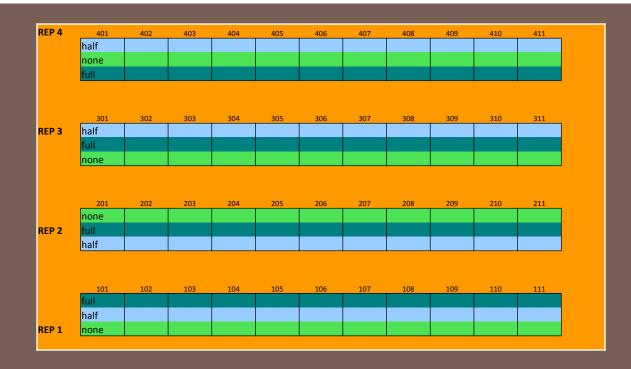
- 1. SF Summerfallow
- 2. PEA Spring Pea
- 3. CCM Full Mixture: Pea, Vetch, Oat, Ryegrass, Turnip, Safflower, Radish, Camelina
- 4. NF Nitrogen Fixers: Pea, Vetch
- 5. FR Fibrous Root: Oat, Ryegrass
- 6. TR Tap Root: Turnip, Safflower
- 7. BC Brassica: Camelina, Radish
- 8. MNF Minus NF: Oat, Ryegrass, Turnip, Safflower, Camelina, Radish
- 9. MFR Minus FR: Pea, Vetch, Turnip, Safflower, Camelina, Radish
- 10. MTR Minus TR: Pea, Vetch, Oat, Ryegrass, Camelina, Radish
- 11. MBC Minus BC: Pea, Vetch, Oat, Ryegrass, Safflower (No turnip)

Plot Study: CCM Phase

Sampling

Year 1: SF, PEA, Full Mix

Biomass of all treatments by species


Year 3: Repeat treatments in place

Sample all treatments

Measurements

- Cover Crop Biomass
- Biological Indicators
 - Microbial Biomass
 - Enzyme activity
 - PMN
 - Mycorrhizal colonization and infectivity
 - Earthworm density
- Physical Indicators
 - Wet aggregate stability
 - Compaction
 - Soil Temperature
 - Soil water
- Chemical Indicators
 - Available N
 - Available P

Plot Study: Winter Wheat Phase

Measurements

- Grain yield
- Grain quality
- Economic return

Sampling

Year 2: All treatments

Plot Study Timeline

Year	Phase	Location	Site
2012	CCM	Gallatin valley (1)	Vandermolen farm
	CCM	MLRA 52 (1)	Oehlke farm
2013	CCM	Gallatin valley (2)	TBD
	CCM	MLRA 52 (2)	TBD
	Spring Wheat	Gallatin valley (1)	Vandermolen farm
	Spring Wheat	MLRA 52 (1)	Oehlke farm
2014	CCM	Gallatin valley (1)	Vandermolen farm
	CCM	MLRA 52 (1)	Oehlke farm
	Spring Wheat	Gallatin valley (2)	TBD
	Spring Wheat	MLRA 52 (2)	TBD

Farm Study

2012 and 2013
4 to 6 on farm studies
Field scale with adjacent fallow control
No-till with herbicide termination

Sampling

- Cover crop biomass
- Plant N content
- Soil water (4 ft): fallow, CCM
- Nitrate-N (3 ft): fallow, CCM
- Grain yield and quality in following year

Expected Results: 2012 - 2013

Plot Study		
Biomass	Full Mix > Pea	
Microbial Biomass, PMN, Mycorrhizae	Full Mix ≥ Pea > SF	
Soil Water	SF > Pea ≥ Full Mix	
Available N (spring)	Full Mix \approx Pea $>$ SF	
Soil Temp	SF > Functl. Groups \approx Pea \geq Full Mix	
Grain Yield	SF ≈ Pea ≈ Full Mix	
Grain Quality	Full Mix ≈ Pea > SF	

Soil Species
Type? Selection?

Timing? Weather
Pattern?
Site
History?

Resource
Goals?

Burgess, unpublished

Do CCM's provide soil quality benefits? If so, how can we make recommendations for their use?

Farm Study	
Soil Water	SF > Full Mix
Available N (spring)	Full Mix > SF
Grain Yield	SF ≈ Full Mix
Grain Quality	Full Mix > SF

Thanks and Further Resources

- USDA WSARE
- Dr. Perry Miller, MSU
- Dr. Cathy Zabinski, MSU
- Dr. Clain Jones, MSU
- Jeff Holmes, MSU
- Herb Oehlke
- Carl Vandermolen
- Jane Holzer, MT Salinity Control Assoc
- Stacey Eneboe, MT NRCS
- Jay Fuhrer, ND NRCS
- Gabe Brown
- Burleigh County Soil Conservation District, www.bcscd.com
- Dr. Mark Liebig, USDA-ARS
- Dr. Yvonne Lawley, U Manitoba
- Dr. Lisa Rew, MSU
- Dr. Bruce Maxwell, MSU
- Pat McGunagle
- NCAT/ATTRA, www.attra.org

First Field Day:
June 14th 10 am
Vandermolen Farm
Amsterdam, MT

MSU Cover Crop Cocktails website:

landresources.montana.edu/soilfertility/ covercrops.html

MT NRCS

www.mt.nrcs.usda.gov/news/ features/covercropsites.html