Interpreting Soil Test Reports and Fertilizer Source Options

Western Extension Agent Training, September 28, 2006

by Clain Jones, Extension Soil Fertility Specialist clainj@montana.edu; 406 994-6076

Your Questions

- How do I interpret a Soil Test Report?
- What are fertilizer options for forages/Western soil fertility issues?
- What info exists on ESN (Environmentally Sound Nitrogen) and is it worthwhile?
- How are urea applications managed differently than ammonium nitrate applications?
- What are small acreage fertilizer strategies/sustainable nutrient cycling for small acreages?

What should you first look for on a soil test report?

- Depth should have at least a 0-6 in. section
- Nitrate-N Is it in lb/ac or ppm? If in ppm, you need to convert to lb/ac: 2 x ppm x depth/6 in. and add up separate depths.
- Is phosphorus measured as Olsen P or Bray P? (MSU guidelines are for Olsen P and there are not good conversions between the 2).

Soil Analysis by Agwisse Laborattonies Northwood: (701) 587-6010 Benson: (320) 843-4109

SUBMITTED FOR:

SOIL TEST REPORT

CENEX HARVEST STATES

PO BOX 1272 29 NORTH CENTRAL

CUT BANK MT 59427

TWP

QTR

SAMPLE

SECTION ACRES PREV. CROP

CE2971

2ND CROP CHOICE

REF# 6796906 LAB# 2582 BOX# 0

Date Sampled:

Date Received:

1IST CROP CHOICE

SUBMITTED BY:

2/28/2002

Date Reported: 2/10/2005

SIRID CIRCIP CHICICE

PARK ATTEMPT SALET	IN THE SOUL	ama	ERPR	ETAH	ION!
HARLE STREET, N. P.	IN HITHE SHARL	WLoow	Low	NViext	Higgh
0-6" 6-24" 0-24"	37 lb/ac 36 lb/ac 73 lb/ac	***	***		
Nitrate					
Olsen Phosphorus	14 ppm	***	****	****	***
Potassium	289 ppm	****	***	****	****
Chloride					
0-6" 6-24" Sulfur	8 lb/ac 360 +lb/ac	****	**	***	****
Boron					
Zinc	0.57 ppm	****	****		
Iron	7.				
Manganese					
Copper					
Magnesium					
Calcium					
Sodium					
Org.Matter	2.5 %	****	***		
Carbonate(CCE)					
0-6" 6-24" Sol. Salts	0.44 mmho/cm 0.67 mmho/cm	****	***	***	

	Diff Contest	POR MADELLINADO	719076an	. Zand D	action and the same	POR THEORY STREET STATE OF		CHARLES CHARLES CHARLESTER			
Ва	rley-Ma	lting		- Constant							
	YIELD	GOAL			YIELD	GOAL		YIELD GOAL			
50	50 BU										
SUGG	SESTE	GUIDE	LINES	SUGG	SESTE	GUIDELINE	S	SUGG	ESTE	O GUIDELINES	
Ва	and					7			Sapotes.		
LB/A	CRE	APPLI	CATION	LB/A	CRE	APPLICATION	ON	LB/A	CRE	APPLICATION	
N	10			N				N			
P ₂ O ₅	15	Band(S	Starter)*	P ₂ O ₅				P ₂ O ₅		2	
K ₂ O	10	Band(S	Starter)*	K ₂ O				K ₂ O			
CI				CI				CI			
S	5	Band	(Trial)	S				S			
В				В				В			
Zn	2	Ba	nd	Zn				. Zn			
Fe				Fe				Fe			
Mn				Mn		7		Mn			
Cu				Cu				Cu			
Mg				Mg				Mg	Mg		
Lime				Lime				Lime			
Soil p	н Ви	Iffer pH	Cation			% Base Satu	ıratic	n (Typic	al Ran	ge)	

	Soil nH	Ruffer nH	Ruffer nH	Ruffer nH	Ruffer nH	Ruffer nH	Ruffer nH	Ruffer nH	Ruffer nH	Cation Cation		% Base Sa	turation (Typ	oical Range)	
Ľ	Soil pH Buffe	Bullet ph	Capacity	% Ca	% Mg	% K	% Na	% H							
	7.5				T.										

What else should I look for?

Test	"Good" range	Possible problem
1631		Possible problem
Soil pH	6-8	Low-poor nodulation; High-can indicate high Na. Either high or low-can tie up P
Organic Matter (O.M.)	2-8%	Low-poor water holding capacity, low nutrient release; High-Cu deficiency, salts if from manure
"EC" or salts < 4 mmho/cm		Poor water uptake, decreased yields
Nitrate-N	10-200 lb/ac	Low-chlorosis; High-'burn' if hot, dry
Olsen Phosphorus (P)	16-60 ppm	Low-poor energy storage, root growth High-possible Zn deficiency or P losses
Potassium (K)	250-700 ppm	Low-chlorosis, short internodes High-possible Ca deficiency
Zinc (Zn)	> 0.5 ppm	Low-stunted growth, interveinal chlorosis

Any red flags here?

How about here?

Soil Analysis Report WESTERN TE	ESTING LABORATORY, IN	1C
---------------------------------	-----------------------	----

Grower:

Submitted by: AGRI BASICS FERTILIZER

DATE: 2-8-2005

1920 9TH AVENUE NORTH, P.O. BOX 3165 GREAT FALLS, MONTANA 59403 (406) 761-1724

Lab Number	3	eld ription	SAMP		ph organic matter%		NITRATE NITROGE PPM			TRATE BS/AC		SPHORU S EN PPM	POTASSIUM K PPM
5948	GAR	DEN	0-6	7.	8 2.0		8		16		27		237
	M EA	ST											
SULPH/ SULFUR			JM Na /100g		LT HAZARD MMHOS/Cm	T	SOIL EXTURE	LIN	1E	MOIST INCH		ZINC Zn PPM	MANGANESE Mn PPM
55 U		.20		1.13	2	Ç	L	v				1.2	
•													
Copper Cu PPM		I	RON Fe PPM		CEC BASED ON TEXTURE		pound of pho		ree pounds of nitro phosphorus, and o stassium per 1000 s		ne pou		
					21.8								1111

What else do you see on soil test reports?

Fertilizer Recommendations

- Use EB 161. Point out 'Guidelines'
- Nitrogen: Need yield potential.
 Grass 25 lb N/ton
 Spring wheat 3.3 lb N/bu
 Winter wheat 2.6 lb N/bu
 Malt barley 1.2 lb N/bu

Table 8. Grass N guidelines based on soil analysis.

GRASS									
Yield Potential (t/a) *	Available N (lbs/a) **								
1	25								
2	50								
3	75								
4	100								
5	125								

^{*} Attainable yield with all growth factors optimized.

Fertilizer N = Available N (from table)

Special Conditions

- Fall N application on sandy soils is not recommended. On all other soils,
- soil N (lb N/ac) (assumes Spring sampled); -25 lb N/ac more if Fall sampled
- 10 lb N/ac if previous crop is an annual legume, 40 lb N/ac if previous crop is alfalfa
- 20 lb N/ac if > 3% O.M.
- Orchardgrass N uptake ~ 1.3 x fescue, brome, timothy N uptake

^{**} Fertilizer N = Available N - soil analysis NO₂-N.

Questions for you:

- Why might more N be needed this coming year in forage crops that received good rainfall in '06?
- Why might less N than normal be needed this coming year in forage crops with average yields?
- What does this tell you??

What else should you and the grower consider in selecting N rate?

http://www.montana.edu/extensionecon/software/FertilizerCostBenefit.xls

N rates on forages

- Don't exceed 60 lb N/acre during seeding year, or within 9 months from fall seeding.
- Don't exceed 15 lb N/acre if placed with seed.

Phosphorus and Potassium Fertilization Strategies

- Sufficiency Approach Do you want to apply minimum necessary to maximize yield in most years? If so, use Table 18 (P) and Table 19 (K).
- Maintenance Approach Do you want to replace the nutrients removed at harvest? If so, use Table 21.
- 3. Build Approach Do you want to build your soil P and K, to minimize yield losses and save on fertilizer in future years? *If so*, add amounts from 1 and 2.

What might grower's answer depend upon?

Table 18. Phosphorus fertilizer guidelines based on soil analysis.

	Olsen P Soil Test Level (ppm)								
Crop	0	4	8	12	16*				
		P Fertiliz	zer Rate (lb	s P ₂ O ₅ /a)					
Alfalfa-Grass	55	50	40	25	10				
Grass	45	35	30	20	5				

Table 21. Estimated nutrient uptake in harvested portions of crops.*

Cron	Unit	Test Weight	N	P ₂ O ₅	K ₂ O	Ca	Mg	S	Fe	Zn	Mn	Cu	В		
Сюр	Crop Unit Weigh lbs/bu				lbs										
Alfalfa	ton		48	11	53	28	5	5.50	0.38	0.11	0.11	0.02	0.02		
Grass	ton	13-45	25	10	38	7	2.50	2		0.08	0.13	0.01			

Costs to maintain P and K for 5 t/ac alfalfa hay

- 5 t/ac x 11 lb $P_2O_5/t = 55$ lb P_2O_5/ac
- 5 t/ac x 53 lb $K_2O/t = 265$ lb K_2O/ac

Cost =
$$$0.28 \times 55 = $15.40$$

+ $$0.21 \times 265 = 55.70
Total = \$71/ac

How much is hay selling for this year?

What P and K fertilization strategy would you recommend for small acreages?

N Source Options

- Urea (46-0-0)
- UAN liquid (28-0-0)
- Anhydrous ammonia (82-0-0)
- Ammonium nitrate (limited supplies)
- Ammonium sulfate (21-0-0-24). Expensive per lb of N, but can increase protein, esp. in dry years.
- CRNs Controlled release nitrogen, such as ESN.
- Urease inhibitors –Applied to urea to decrease volatilization, such as Agrotain.

Controlled Release N

- Made with polymer coatings to:
 - -Decrease leaching
 - -Decrease volatilization

Ex: In 124 studies, ESN increased corn yield an average of 7 bu/ac over urea (Blaylock and Tindall, 2006). Increase likely due to decreased volatilization.

ESN Cost? \$50 -\$70 more per ton. Net economic gain on corn (mainly Midwest)

Worth of CRNs and Agrotain on forages and small grains in Montana? Not enough research yet to say, but benefits are likely less due to smaller revenues here and less potential for volatilization.

Differences between urea and ammonium nitrate

Urea is more damaging to seed germination

Implications:

- 1. MSU recommends < 30 lb N/ac of AN with seed, but < 15 lb N/ac of UR (crop dependent).
- 2. Recommend a spreader (or wider spreader) so that more UR can be placed near seed.
- Urea has higher potential to volatilize

Implications:

- 1. Urea application should be done during period with cool temperatures, especially when on moist, sandy soils with residue.
- 2. Urea should be irrigated (>0.5 inches) or tilled in if possible.
- Urea is not immediately available for plant uptake

Implication: For same effect, urea needs to be applied earlier in season, especially if Fall soil test N levels are low (<20-30 lb N/ac).

P Source options

- Monoammonium P (MAP)
- Diammonium P (DAP)
- Liquids (generally more expensive than MAP and DAP)

Generally no yield differences between sources. Exception: Liquids produce higher yields on highly calcareous soils (> 20% CaCO₃)

Placement: Need roughly 3 times more P if broadcast than if placed near the seed at Olsen P levels < 8 ppm, and 2 times more P when Olsen P = 8-12 ppm. MSU guidelines assume P will be banded with the seed.

Fertilizer Application Timing

Nitrogen:

Avoid Fall N application on sandy soils.

How favor warm season grasses in native pasture?

Are split applications worth it?

Phosphorus

Apply in fall or late winter for better response.

Organic fertilizer options for small landowners

Comr	Common Organic Fertilizers												
(大学)下沙区(N (%)	P ₂ O ₅ (%)	K ₂ O (%)	S (%)									
Rock Phosphate ¹	0	3-16	0	0									
Blood Meal ²	12	1-2	0-1										
Bone Meal ²	1-6	11-30	0										
Gypsum ³	0	0	0	17									
Greensand ³	0	1	6	0									
Manures⁴: Dairy	0.6 - 2.1	0.7 - 1.1	2.4 - 3.6	11/1									
Beef Cattle	1 - 2.5	0.9 - 1.6	2.4 - 3.6										
Horse	1.7 - 3	0.7 - 1.2	1.2 - 2.4										
Swine	3 - 4	0.4 - 0.6	0.5 - 1	265									
Poultry	2 - 4.5	4.5 - 5.5	1.2 - 2.4										
Sheep	3 - 4	1.2 - 1.6	3 - 4										

¹Range of P₂O₅ from Havlin et al. 2005. Soil Fertility and Fertilizers. Prentice Hall.

²Blood and bone meal data from Koenig and Johnson, 1999.

http://extension.usu.edu/files/gardpubs/hg510.pdf

³Gypsum and greensand data from Gardener's Supply Co.

http://www.gardeners.com

⁴Manure nutrient content based on dry wt. data from Knott's Handbook for Vegetable Growers. 1997. John Wiley & Sons, Inc.

Conclusions

- Given some criteria, soil test reports can be quickly evaluated for potential problems.
- N, P, and K recommendations can be made by knowing how to use EB 161 AND giving the grower some options (e.g. sufficiency vs. build)
- Different N and P sources generally don't produce large yield differences. However, good management of volatile N sources can reduce yield losses in some situations.
- Fertilizing small acreages is similar to large acreages, but may be less constrained by economics.

QUESTIONS?

For more information on N cycling, fertilizer sources, placement and timing see:

http://landresources.montana.edu/nm

For more information on urea volatilization and management, see:

http://www.oznet.ksu.edu/library/crpsl2/NCR326.pdf

MSU Soil Fertility webpage:

http://landresources.montana.edu/soilfertility