FERTILIZER TIMING AND PLACEMENT

Extension Agent Agronomy College September 24, 2014

Clain Jones

clainj@montana.edu 994-6076

Goal

 Describe optimal fertilization timing and placement for different nutrients, sources, and production objectives

Mobility in soil of selected nutrients

Mobile (and soluble)	Relatively immobile	Very immobile (and insoluble)
Nitrogen (as nitrate)	Potassium Nitrogen	Phosphorus Copper
Sulfur	(as ammonium)	Iron
Boron		Manganese
Chloride		Zinc

Why important?

Indication of leaching potential which influences timing and affects optimum fertilizer placement

Timing depends on source

- Slowly available (Manure, slow-release N, phosphate rock, Ca-phosphate, elemental sulfate, Ca-sulfate, oxysulfate forms of microminerals)
 - take time to become available
 - apply well before needed e.g. fall
 - can build soil levels
 - less expensive per unit (except with N)
- Readily available (urea, ammonium, chelated or sulfate forms, phosphate)
 - Apply when needed e.g. spring
 - foliar/liquid options
 - more expensive per unit (except with N)

Timing depends on source – N must be available to benefit yield and protein

More info in *Nutrient Uptake Timing* (EB0191)

Plant Growth -----

N availability affects yield and protein

Added N goes to protein Added N increases no. tillers and kernels per head Grain will use N from stems/leaves to make protein < Early Leaf Tillering Stem Elongation Heading Ripening

Use Nutrient Uptake figure to time top-dress

Example on per acre basis:

- 165 lb N total need
- 40 lb N in soil + 60 lb preplant N = 100 lb N
 = 60% total N required (100/165)
- (165 100) = 65 lb N needed to top-dress

Top-dress amount and timing based on wheat growth stage

Plant Growth ---->

Your turn: It rains 6 more inches in May than average

Plant Growth ---->

How much N needs to be top-dressed and by when if just do one top-dress?

- 1. 125 lb N/ac by early tillering
- 2. 125 lb N/ac by midtillering
- 3. 125 lb N/ac by midstem elongation
- 4. You are tough out of luck

Answer

Plant Growth ---->

Split/In-season N Applications

- Fall broadcast supplies early growth needs
- In-season adjustment for estimated yield potential based on precip to date
 - Don't apply 2nd application if dry
 - Apply large 2nd application if wet
- Later applications:
 - less chance of causing lodging
 - Potential to increase protein rather than yield

When should late-season N be applied to maximize grain protein?

In-season N rate, timing, and dryland vs. irrigation affects protein boost

Late season in Added (15 14) bu yield)

Ability to incorporate with rain or irrigation more important than exact timing at flowering

Broadcast before rain or irrigation (to minimize volatilization loss)

Take home message on N timing

- Need sufficient N at tillering/stem elongation because of high N demand
- For protein boost, consider applying additional N
 - If you have a way to apply without physically damaging crop
 - If indicated by flag leaf N level (see Fertilizer Fact #12)
 - Irrigated ideally during flowering
 - Dryland more important to get incorporation with > 0.5" rain event than "correct" timing
- In-season foliar minimize leaf burn (see Sources presentation)

Questions on N timing?

Phosphorus

- P is immobile and gets tied up in soil
- For cereal grains, consider starter (pop-up)
- For legumes:
 - Build P up before seeding perennials, or in the alternate crop year for annual legumes
 - On established alfalfa stands
 - Apply several years worth at one time
 - Apply after last cutting yet before fall period of regrowth to feed root reserves

Impact of starter P in a cool spring on spring wheat

K timing

Is relatively immobile – what is best timing?

- For cereal grains: subsurface band or broadcast at seeding
- For legumes:
 - split between first and after last cutting to minimize luxury consumption of first harvest
 - apply after last cutting and before fall period of re-growth to feed root reserves

S timing

- In-season applications of ammonium thiosulfate and ammonium sulfate, can rapidly correct sulfur deficiency.
- Sulfate fertilizers not suggested for fall application. May leach overwinter.
- Elemental S slow to supply plant available S.
 Apply in fall or before seeding to become available before peak demands. Will supply crop for > 2-3 years.

Questions on P, K and S timing?

Placement

N placement

 In general, subsurface placement/incorporation of N fertilizer decreases losses and increases availability

Incorporation depth on volatilization

N seed placed

- Fertilizer is salty and can prevent germination if too close to seed
- As opener width goes up, or row spacing goes down, safe rates increase
 - A larger opener spreads out fertilizer, decreasing salt concentrations
 - Narrow rows = less N per row (10 lb N/ac max at wide row spacing)

Approximate safe rates of urea N (lb N/acre) to seed place with cereal grains

Soil texture	1" spread (disk or knife)		2" spread (spoon or hoe)			3" spread (sweep)			
	Row spacing			Row spacing			Row spacing		
	6	9	12	6	9	12	6	9	12
	%SBU ^{1.}			%SBU			%SBU		
	17	11	8	33	22	17	50	33	25
Light (sandy loam)	20	17	15	30	25	20	40	30	25
Medium (loam to clay loam)	30	25	20	40	35	30	50	40	35
Heavy (clay)	35	30	30	50	40	35	60	50	40

From: Saskatchewan Ministry of Ag

1. SBU = (seed row width/row spacing) x 100

How compare with MSU guideline's?

A note on legumes and N

10 – 20 lb N/acre can be top-dressed or placed away from the seed to boost seedlings towards N-fixation, especially if soil N < 15-20 lb N/acre

Placement of phosphate and KCl

- Incorporate prior to seeding
- Place in rooting zone at seeding
 - Advantage fast uptake in spring
 - Disadvantage— dry out soil and can cause poor germination
- Avoid seedling burn
 - <20 lb P₂O₅/acre MAP
 0 DAP with seed
 - <10-15 lb N plus K₂O with seed

P band vs. broadcast

(Randall & Hoeft 1988)

Micronutrient fertilizer application timing and method

Timing

- Borate, chelated or sulfate forms: Spring
- Oxysulfate forms: Fall

Method

- Preferred method is broadcast and incorporated except iron is best as chelated, foliar
- Seed-placed and subsurface band is generally not recommended (due to toxicity)
- Foliar applications use less than ½ the suggested rate. Can be done with borate, and chelated copper, iron, manganese and zinc

Copper Rate, Method and Timing Effects SW Grain Yield

Dryland, NE Saskatchewan Sandy loam, Annual application Soil Cu 0.4 ppm Malhi et al. 2005

Cu rate/method/timing

Summary

- Slowly available sources apply well before early plant growth
- Readily available sources apply just before rapid plant growth
- N for grain protein apply near flowering
- Build up P and K to supply legumes
- Mobile nutrients can be broadcast
- Urea should be incorporated, watered or placed beneath soil surface
- Non-mobile nutrients should be placed near rooting area

Questions?

For more information see MSU Extension's

Fertilizer Placement and Timing (4449-11)

http://landresources.montana.edu/nm/

MT Cool-Season Pulse Production Guide (EB0210)

Nutrient Uptake Timing (EB0191)

Practices to Increase Wheat Grain Protein (EB0206)

http://landresources.montana.edu/soilfertility/

Flag Leaf Diagnosis of Grain Protein Response to Late-season N application in Irrigated Spring Wheat (FFact # 12) http://landresources.montana.edu/fertilizerfacts/