FERTILIZER RATE CALCULATIONS Extension Agent Agronomy College September 24, 2014

Clain Jones clainj@montana.edu 994-6076

MSU Soil Fertility Extension

- To understand basic concept of yield response curves
- To take a soil test result and turn it into a fertilizer recommendation using published rate tables and online tools

Nutrient balance

- Liebig-Sprengel Law of the Minimum
- Growth is limited by the limiting factor
- Proper balance leads to
- Optimal production
- Best use of fertilizer \$
- Protection of water and air

Illustration courtesy Government of Western Australia Dept. of Agriculture and Food

Soil test indicates probability of response

Limiting soil nutrient levels

Nutrient	Limiting level in top 6 inches (ppm)
Ν	Crop and yield goal dependent
Р	16
К	250
S	Not available –tissue testing better
В	1.0
Cl	30 lb/ac in top 2 feet
Cu	0.5
Fe	5.0
Mn	1.0
Zn	0.5

Table 1. Interpretation of Soil Test Reports for Agriculture (MT200702AG)

Fertilizer guidelines

- Guidelines for N, P, K and 5 micro-nutrients for production of most MT crops are provided in *Fertilizer Guidelines for Montana Crops* (EB0161).
- They are based on soil analysis discussed earlier. See Soil Sampling and Laboratory Selection (MT4449-1), Soil Sampling Strategies (MT200803AG). There is not a good soil test for S.

FINALLY!!!!

How do I determine N fertilizer amount? Basic steps for all crops

- 1. Determine yield potential
- 2. Determine available soil nutrient level soil test
- 3. Look up suggested nutrient guidelines for given crop and yield in *Fertilizer Guidelines for MT Crops* or crop specific bulletins (e.g. pulse, forage)
- 4. Calculate difference between what is available and what is needed to get fertilizer recommendation

Yield potential

How determine?

- Average yield from past records, can be adjusted for soil moisture in late March, early April
- Average yield x 1.05 (optimistic or realistic?)

Example N calculation

Producer has the following soil test report:

- Wants to grow malt barley
- Wheat yield goal 50 bu/ac
- S wheat yield goal = 0.70 x 50 = 35 bu/ac
- Barley yield goal 50 bu/ac

Look up N guidelines in Fertilizer Guidelines for MT Crops

	BARLEY	- FEED		BARLEY	- MALT		
ſ	Yield Potential	Available N		Yield Potential	Available N		
ļ	(bu/a) *	(lbs/a) **	Γ	(bu/a) "	(IDS/d) ***		
Ť	40	64		60	72		
ſ	60	96	J	70	84		
	80	128		80	96		
	100	160		90	108		
	120	192		100	120		
	140	224		110	132		
I				120	144		

Table 2. Feed and malt barley N guidelines based on soil analysis.

- Barley feed \approx 80 lb N/ac
- Barley malt \approx 66 lb N/ac
- W wheat \approx 130 lb N/ac
- S wheat \approx 115 lb N/ac

Table 17. Spring and winter wheat N guidelines based on soil analysis.

WHEAT- SPRING***						
Yield Potential (bu/a) *	Available N (lbs/a) **					
30	99					
40	132					
50	165					
60	198					
70	231					
80	264					
90	297					
100	330					

WHEAT-WINTER							
d Potential (bu/a)*	Available N (lbs/a) **						
30	78						
40	104						
50	130						
60	156						
70	182						
80	208						
90	234						

Date Sampled

Date Received 08/28/2014

Date Reported 8/28/2014

Nutrient In	The Soil	In	terp	retati	ion	15	st Cro	op Choic	e	2n	d Cro	op Choic	e	31	d Cro	op Cho	oice
		VLow	Low	Med	High		Wheat	High Pro.			Wheat-	High Pro.			Barle	y-Malting)
0-6" 6-24"	24 lb/ac 61 lb/ac						YIEL	D GOAL			YIEL	GOAL			YIEL	D GOAL	
24-42"	63 lb/ac	*****	**				50	Bu			60	Bu			70	BU	
0-24'' total	85 lb/ac 148 lb/ac					SUG	GESTE	D GUIDELI	NES	SUG	GESTED	GUIDELIN	ES	SUG	GESTE	D GUIDE	LINES
Nitrate	140 lb/ ac						B	Sand		0	В	and		+/-1	e, e	Band	1
		-				LB//	CRE	APPLICA	TION	LB/A	ACRE	APPLICA	TION	LB7.	CRE	APPL	CATION
Olsen Phosphorus	4 ppm	*****				N	1/1	50		N	1 4/1	80		N	25	Custo	mized
Potassium	368 ppm		•••••			P ₂ O ₅	36	Band	*	P ₂ O ₅	43	Band ^a	•	P ₂ O ₅	35	Bai	nd *
0-24'' Chloride	20 lb/ac	*****	••			K2O	10	Ban (Starte	3o 1	K2O	10	Band (Starter		K2O	10	100000	and rter)*
, 0-6" 6-24"	14 lb/ac 36 lb/ac	******	01000		**	CI	20	Broadca	ast	CI	20	Broadca	st	CI	20	Broa	dcast
Sulfur						S	9	Band (Tr	rial)	S	9	Band (Tr	ial)	S	9	Band	(Trial)
Baron		-				В		*		В				в			
Zinc		-		-		Zn				Zn				Zn			
Iron Manganese		-		-		Fe				Fe				Fe			
Copper	0.5 ppm					Mn				Mn				Mn			
Magnesium	0.5 ppm					Cu	2	Band	1	Cu	2	Band		Cu	2	Ba	and
Calcium						Mg				Mg				Mg			
Sodium						Lime				Lime				Lime			
Org.Matter	2.3 %		***			Cation Exchange % Base S		se Sa	turatio	n (Tv	pical Ra	nge)					
Carbonate(CCE)						Soil (HE	Buffer pH	12225252	Capacil		% Ca	%1			% Na	% H
0-6" 6-24" Sol. Salts	0.36 mmho/cm 0.35 mmho/cm	•••••	1.00			0-6" 8 6-24" 8	10.0										

What do you suggest and why?

What soil N value should you use?

24, 61, 63, 85, 148

Why?

MT Guidelines are based on N in top 2 feet

Fertilizer N = Suggested N – soil test N

- Barley feed = 80 85 = -5 lb N/ac fertilizer
- Barley malt = 66 85 = -19 lb N/ac
- W wheat = 130 85 = 45 lb N/ac
- S wheat = 115 85 = 30 lb N/ac

Is malt barley the best choice?

If 46 lbs per acre of N needed, how much urea (46-0-0) is needed?

The 46-0-0 means this fertilizer is 46% N, 0% P_2O_5 , and 0% K_2O . So the fraction of N in urea is 0.46 (46/100).

N fertilizer = <u>(46 lbs/acre)</u> 0.46 = **100 lbs urea/acre**

N rate adjustments

- Stubble: small grains stubble is high in carbon to N (C:N). Adjust fertilizer N up or down?
 10 lb N/1000 lb stubble up to 40 lb N
- Fallow: assume ½ of stubble has decomposed over previous year when adjusting
- After legume rotation: Adjust fert up or down? Legumes credit (add) N

Сгор	N credit (lb N/acre)
Alfalfa	40
Annual legume 1 x	~10
Annual legume >3 x	~20

N rate adjustments (cont)

• SOM

- <1% SOM, add 15-20 lb N/acre</p>
- >3% SOM, reduce 15-20 lb N/acre
- Tillage No-till may require extra N for 6 to 15 years

N rate adjustments for remaining stubble Continuous winter wheat

```
Stubble Weight = Grain Weight (lb grain/ac) x Stubble/Grain Ratio (lb
stubble/lb grain)
              = 3000 lb grain/ac x 1.67 lb stubble/lb grain
              = 5000 lb stubble/ac
Stubble Remaining = Stubble Weight (lb stubble/ac) - Stubble
Removed (lb stubble/ac)
              = 5000 lb/acre – 2000 lb/acre
              = 3000 lb/acre
Nitrogen adjustment for Stubble Remaining = 10 lb N/1000 lb Stubble
x Stubble Remaining (lb/ac) (add this to N rate, up to 40 lb N/ac)
              = 0.01 lb N/lb x 3000 lb/ac
              = 30 lb N/ac
```

These examples are in Developing Fertilizer Recommendations for Ag

N adjustments for remaining stubble: Fallow-barley

Stubble Weight = Grain Weight (lb grain/ac) x Stubble/Grain Ratio (lb stubble/lb grain)

= 4800 lb grain/ac x 1.13 lb stubble/lb grain

= _____ lb stubble/ac

Stubble Remaining = Stubble Weight (lb stubble/ac) - Stubble Removed (lb stubble/ac)

= ____lb/acre – 2000 lb/acre

= _____ lb/acre

Nitrogen adjustment for Stubble Remaining = 10 lb N/1000 lb Stubble x Stubble Remaining (lb/ac) (add this to N rate, up to 40 lb N/ac)

Nitrogen Adjustment for Stubble Decomposition in Crop-Fallow Systems = 0.5 x Nitrogen adjustment for stubble remaining (lb N/ac) = 0.5 x _____lb N/ac = _____lb N/ac N adjustments for remaining stubble: Fallow-barley

Stubble Weight = Grain Weight (lb grain/ac) x Stubble/Grain Ratio (lb stubble/lb grain)

= 4800 lb grain/ac x 1.13 lb stubble/lb grain

= <u>5424</u> lb stubble/ac

Stubble Remaining = Stubble Weight (lb stubble/ac) - Stubble Removed (lb stubble/ac)

= <u>5424</u> lb/acre – 2000 lb/acre

= <u>3424</u> lb/acre

Nitrogen adjustment for Stubble Remaining = 10 lb N/1000 lb Stubble x Stubble Remaining (lb/ac) (add this to N rate, up to 40 lb N/ac)

= 0.01 lb N/lb x <u>3424</u> lb/ac = <u>34.24</u> lb N/ac

Nitrogen Adjustment for Stubble Decomposition in Crop-Fallow Systems = 0.5 x Nitrogen adjustment for stubble remaining (lb N/ac) = 0.5 x <u>34.24</u> lb N/ac = <u>17.12 lb N/ac</u>

Optimize fertilizer N rate

Danger of aggressive N fertilization?

- Hot dry season, low protein discounts, lower net returns, and higher leaching/volatilization N losses.
- In wet year if all N is applied early can lead to excess tiller production and decreased yields.
- Risk of high forage nitrates

Strategy to avoid this possibility?

- Use a conservative pre-plant N rate
- Apply a 2nd application if needed will discuss split applications in 'Timing' section

Questions on N rate calculations?

P fertilizer calculations

 Table 18 (subset). P fertilizer guidelines based on soil analysis (EB0161)

	Olsen P soil test level (ppm)					
Crop	0	4	8	12	16*	
Crop		P fertilize	er rate (lb P_2	O ₅ /acre)		
Alfalfa	140	110	75	40	20	
Barley	50	40	30	20	10	
Grass	45	35	30	20	5	
Lentil, pea	35	30	25	20	15	
Wheat - Spring	50	45	35	30	20	
Wheat - Winter	55	50	45	40	35	

* With P>16 ppm consider using crop removal rates (EB0161 Table 21) as P fertilization guideline. P guideline for alfalfa at 16 ppm (0 lb) is likely an error in EB0161.

<u>Example</u>

Winter wheat, Olsen P = 10 ppm P_2O_5 needed = **42.5 lb/ac**

Rates based on different approaches

Example banded P fertilizer recommendations using different approaches.							
WWheat grain yield potential = 60 bu/acre							
Producer leaves straw on field							
Critical test level for P is approximately 16-18 ppm for all crops							
Recommended P rate (Ib P ₂ O ₅ /acre)							
	Olsen P 4 ppm	Olsen P 20 ppm					
Sufficiency approach ^{1.}	50	0					
Maintenance approach ^{2.} =	Your turn						
crop removal							
Build approach = sufficiency +							
maintenance							
^{1.} Table 18 in Fertilizer Guidelines for Montana Crops							
^{2.} Table 21 in Fertilizer Guidelines for Montana Crops							

To calculate 'maintenance or build' rates, need crop removal rates

- Table 21 in EB0161
- IPNI nutrient removal calculator: crop nutrient removal estimates for a broad, and continually expanding, list of field crops <u>http://ipni.info/calculator</u>

Rates based on different approaches

Example banded P fertilizer recommendations using different approaches.						
WWheat grain yield potent	ial = 60 bu/acre					
Expected straw removal = 1	5 ton/acre					
Critical test level for P is ap	proximately 16-18 ppm for all o	crops				
	Recommended P rate (Ib P ₂ O ₅ /acre)					
	Olsen P 4 ppm	Olsen P 20 ppm				
1. Sufficiency approach	50	0				
2. Maintenance approach= crop removal	60 bu x 0.62 lb P ₂ O ₅ /bu = 37					
Build approach = 1+2	87					

- Why might you recommend a maintenance approach?
- Why would you recommend a build approach?

How much MAP (11-52-0) do you need to get 43 lb P_2O_5/ac ?

The 52 means MAP is 52% P_2O_5 so fraction is 0.52

MAP needed = 85 lb/ac

Potassium

 Table 19. K fertilizer guidelines based on soil analysis (EB0161)

		n)				
crop	0	50	100	150	200	250*
	K fertilizer rate (lb K ₂ O /acre)					
Alfalfa	240	205	170	140	95	30
Barley – malt	90	80	65	50	35	25
Grass	80	70	60	45	30	15
Lentil, pea	45	40	35	30	25	20
Wheat	135	115	90	70	40	10

* With K>250 ppm consider using crop removal rates as K fertilization guideline

Example

Malt barley, K = 100 ppm, $K_2O \text{ needed} = ??? lb/ac$ 65

MSU Soil fertility recommendations http://www.sarc.montana.edu/php/soiltest/

Submit

Submit Clear form								
1. Top	soil sampl	e results:		2. Soil Nitrate Results:				
Olsen P	6	ppm 🔻	Sample #	top	bottom	Soil test v	alue	
Extractable K	50	ppm 🔻	1	0	6	60	ppm 👻	
Soil Organic Matter	1.5	%	2	6	12	65		
			3	0	0	0		
			4	0	0	0		
3. Crop Management:								
Last year's o sugarbeet	•	Yield go	oal of <mark>80</mark>	bu/a	acre 🔻			

S fertilization

- Tissue sampling more reliable than soil test.
 < 0.20 to 0.25% S in uppermost leaves before heading, may limit yield and protein.
- May be needed if plants appear N deficient, necessary for N utilization
- In-season rescue treatment of 20-30 lb S/acre as sulfate can help

Questions so far?

Optimize fertilizer N rate based on economics

How?

- Use a conservative pre-plant N rate based on:
 - spring soil sample
 - realistic yield potential
 - economic rate calculator

http://landresources.montana.edu/soilfertility/small%20grains%2 Oeconomic%20calculator.html

 Apply a 2nd application if needed – based on adjusted yield potential, consider using in-season sensorbased technology

Introduction	WW Yield Response	WW Protein Response	Net Revenue From Fertilizer	Net Revenue Versus Yield
	mic Analysis of Fertil ication Rates for Win			
MONTANA	Wheat in Montana.			
STATE UNIVERSITY EXTENSION	Steps to Use Program			
	Introduction			
	Step 1 - Yields			
	Step 2 - Protein			
	Step 3 - Net Revenue			
	Step 4 - Revenue vs Yield			

Authors: Clain Jones Montana State University Extension Montana State University Extension 406-994-6076 clainj@montana.edu

Duane Griffith 406-994-2580 griffith@montana.edu The F11 key will toggle (switch on and off) the screen space from normal to maximum viewable area.

Montana State University Extension

Questions?

Considerations when fertilizing with manure

Easy to over apply N, P, and K

- Rapid excess buildup of P and K if fertilizing to meet N needs
- Of 67 Midwest gardens 92% had excess P and 88% excess K after just 1 - 6 years of 'uninformed' fertilization with composted dairy manure

(Hansen unpub data, Ohio State Univ)

- Feed to P and K demands
- Use legumes or source such as blood meal to supply N

Approximately how much total N, P, and K does 1" of manure compost supply?

		Ν	P_2O_5	K ₂ O	
		I			
	Removed annually by vegetables	3.4	0.3	3.2	
⊥.	Added by 1" manure	40	15	40	50%
	Added by 1" manure	6	1	6	50%

Response Counter Approximately how much total N, P, and K does 1" of manure compost supply?

		Ν	P ₂ O ₅	K ₂ O		
		lbs/1000 sq. ft.				
а	Removed Innually by vegetables	3.4	0.3	3.2		
	Added by 1" nanure	40	15	40		
	Added by 1" nanure	6	1	6		

How much organic matter?

- 1" manure compost will add about 1.5% O.M.
- 1" plant compost will add about 3% O.M.
- 5-8% O.M. is optimal O.M. is not the cure-all for all soil ailments

How can you increase soil organic matter without adding too much P and K?

- Add organic matter high in C (dry leaves, wood shavings, straw, peatmoss), but remember, "immobilization" happens
- Add organic matter based on plant's P needs and add N with chemical fertilizer, organic fertilizer such as blood meal, or plant legumes

Summary

- Fertilizer rates depend on crop, yield goal and soil test values
- Rates for N need to be adjusted for stubble, prior crop/fallow, SOM, no-till
- Rates vary for sufficiency, maintenance, or build approach to fertilization
- Piling it on higher and deeper is not the answer for manure in gardens

Questions?

For more information see MSU Extension's:

http://landresources.montana.edu/soilfertility/publications.html

- *Developing Fertilizer Recommendations for Ag* (MT200703AG)
- Home Garden Soil Testing & Fertilizer Guidelines (MT00705AG)
- *MT Cool Season Pulse Production Guide* (EB0210)
- *Nitrate Toxicity of MT Forages* (MT200205AG) revision this fall
- Soil Nutrient Management for Forages: P, K, S and Micros (EB0217)
- Soil Nutrient Management for Forages: N (EB0218)