Nutrient Management of Forages and Legumes

Crop Pest Management School Bozeman, January 6, 2010

by Clain Jones, Extension Soil Fertility Specialist and Kathrin Olson-Rutz research associate

clainj@montana.edu; 994-6076

http://landresources.montana.edu/soilfertility

AGRICULTURE

MAKING A DIFFERENCE IN MONTANA COMMUNITIES

Goals

- 1. To review use of Fertilizer Guidelines to determine fertilizer N rates on forages
- 2. To present yield and economic responses of pasture and hay to fertilizer
- 3. To provide an update on new fertilizer products that could benefit forage producers
- 4. To illustrate some benefits of phosphorus, potassium and sulfur on legumes and forages

Do you or your clients grow forages?

1. Annual forages 2. Perennial forages 3. Both 4. None

1.

How much N should be applied to alfalfa-grass stands?

Can use Fertilizer Guidelines for Montana Crops (EB 161)

ALFALFA/GRASS				
	80/20	60/40	40/60	20/80
field Potential (t/a)*	————N fertilizer (lbs/a)———			
1	5	10	15	20
2	10	20	30	40
3	15	30	45	60
4	20	40	60	80
5	25	50	75	100
6	30	60	90	120

Need to divide by fraction of N in fertilizer to find total fertilizer need

How much N should be applied to grass?

Fertilizer Guidelines for Montana Crops (EB 161):

GRASS		
Yield Potential (t/a) *	Available N (lbs/a) **	
1	25	
2	50	
3	75	
4	100	
5	125	

http://www.montana.edu/wwwpb/pubs/eb161.html

Single N application on dryland grass pasture

- near Willow Creek, MT
- 0, 50, 100 lb N/acre spring broadcast
- harvested once
- dryland grasses

- Natv Bnch: Basin wldrye
- Natv Rhizom: Western whtgrs
- Hybrid Bnch: whtgrs (2), wldrye (4)
- Intro Rhizom: whtgrs (3)

Single N application on dryland grass pasture

First year marginal return as hay

First year marginal return as forage

Why would anyone fertilize pasture?

Potential long term effect

Single N application to dryland grass pasture

- near Havre, MT
- 0, 50 and 100 lb N/acre fall broadcast once
- harvested for 6 years
- dryland grasses
 - **Natv Bnch**: Basin wldrye, Beardless whtgrs, Green needlegrs, Slender whtgrs
 - **Natv Rhizom:** Thickspike whtgrs, Western whtgrs
 - Intro Bnch: Crested whtgrs, Russian wldrye, Tall whtgrs
 - Intro Rhizom: Pubescent whtgrs, Intermed whtgrs (2)

Single 50 lb N application increases yields over control on some grasses for several years

Single N application increases dryland grass yields

First year marginal return on dryland grass fertilization

Havre, dryland grasses single fall broadcast N lb/acre \$375/ton urea, \$80/ton hay

10

Lorbeer et al. 1994

6-yr average annual marginal return as hay

6-yr average annual marginal return on forage

Under what situation would you advise N fertilization?

- 1. Only if there is a local hay market
- 2. On any grass if individual is also buying hay
- 3. Only with introduced rhizomatous species

0 of 5

1.

Effect of N Rate on Irrigated Western Wheatgrass, Blaine County

QUESTIONS?

Placement

- Granular: On established forage, surface broadcast is essentially only option. Others?
 Liquid (UAN; 32-0-0 or 28-0-0): Surface broadcast including fertigation, surface band, or knifed.
 - <u>Method</u> Broadcast Knife Surface Band

Forage Yield

2.9 t/ac 2.8 t/ac 3.4 t/ac

N. Central Regional Extension Pub #326, KSU

Foliar application

- Some N can be absorbed through leaves
- However, most foliar applied N ends up being washed off and taken up by roots:
- Only 8-11% of foliar applied liquid urea was taken up by leaves, whereas 37-67% of soilapplied N was taken up by plant in same study (Rawluk et al., 2000).
 - Risk of burn? Likely not an issue due to low rates applied (~25 lb N/t). Has anyone seen grass 'burn'?

Timing

- Yield and quality are affected by timing
- Because urea may take days to weeks to become available, urea should be applied earlier than AN historically was for fast green-up (AN simply dissolves, UR requires a chemical reaction to become available).

Enhanced Efficiency Fertilizers and forage production

- Forage production lacks incorporation, and plant residue intercepts fertilizer, increasing chance for volatilization
 - EEFs retain N on site by reducing losses through:
 - Stabilizing or inhibiting soil processes to extend N availability (NSN[®]) or reduce urea conversion to ammonia (Agrotain[®]: urease inhibitor – 14 days max) or ammonium to nitrate (DCD)
 - Slow release of urea through a coating (polymer coated PCU such as ESN[®], sulfur coated - SCU)

What is your experience with EEFs?

- 1. Never heard of them
- 2. Heard of them but never used
- 3. Have used once
- 4. Have used more than once
- 5. Have recommended their use

1.

Nitrogen EEF and forage production

- Can increase mid to late season cuttings and protein, and encourage uniform growth through season
- Can be blended with urea to meet goal
 - Large early crop? PCU too slow, but urease inhibitor can help reduce urea loss
 - Season-long forage or a late cutting? Delayed release of PCU desirable

EEFs

- Allow application flexibility e.g. fall broadcast on coarse soil
- Are environmentally responsible but more \$
- Are a Conservation Stewardship Program
 enhancement

Enhanced Efficiency Fertilizers (EB0188) http://landresources.montana.edu/soilfertility Go to Fertilizer Information

General considerations for dryland grass N fertilization

- Species response to fertilization varies greatly
- Introduced and hybrid grasses tend to respond more than native grasses
- A single moderate fertilization (50-100 lbs) may increase production for several years
- Equal amounts of total N applied once or annually over several years can yield the same total production

Other considerations for dryland grass N fertilization

- Dryland grass pasture tends to hold N on site and respond during wet years
- Protein and digestibility may improve with N added
- Net economic gain as hay, but most likely not as forage. What does this tell you?

QUESTIONS?

Phosphorus (P)

Why often deficient in Montana soils?

Binds with calcium to form poorly soluble calcium phosphate minerals

Advantages of phosphorus (and potassium, sulfur) fertilization on alfalfa-grass stand?

- Helps with N fixation in nodules
- Favors alfalfa over grass

Single P application increases alfalfa yield for several years

P fertilization strategy

- At \$80/ton hay and \$0.40/lb P, net revenue of P fertilization = \$22/acre/year
- At \$80/ton hay and \$1.20/lb P, net revenue of P fertilization = \$2/acre/year

P rate and source on alfalfa yield

Marginal return on P by rate and source

P rate and source on yield

 2002 2003

 yes
 P > no P
 yes

 no
 MAP > APP
 yes

 no
 full P > $1/_2$ P
 yes

What to recommend to producers when \$400/ton MAP and \$100/ton hay on a site with Olsen P < 8 ppm?

 No application
 Single large application
 Smaller annual applications

0 of 5

1.

0%0%0%0%0%0%000%<t

How might your recommendation be different when MAP is \$1050/ton?

Marginal return on P by rate and source at high \$ P

Olsen P = 7.8 ppm (0-12 in.)

Olsen P = 4.0 ppm (0-12 in.)

Phosphorus fertilization considerations

- Low P soil should yield higher return on P investment
- Yield response to P varies with growing conditions
- On average, MAP is more economical than APP, but not in every case

QUESTIONS ON NITROGEN OR PHOSPHORUS?

Potassium (K)

Needed in Montana?

Useful on many soils, even some having high K values (especially in spring due to cool temperatures)

Which forages have largest K needs?

K removal amounts in forage crops

Crop	Assumed Yield	K ₂ O removal
	per Acre	(lb/acre)
Alfalfa	2.5 t	150
Brome grass	1.5 t	95
Orchard grass	1.5 t	75
Timothy	1.5 t	94
Corn silage	20 t	167

How might K, or lack of K, affect an alfalfa-hay field?

Factors decreasing S availability

- Irrigated with low S in irrigation water
 Sandy, acidic, or low organic matter soils
- 3. Cold soils
- 4. Soils formed from minerals low in S or far from industrial sources

Sulfur (S)

Responses seen in alfalfa-grass fields?

Note: Yield increased 30% at Moccasin (See Fert. Fact 27)

QUESTIONS ON SULFUR?

Special considerations for grass fertilization

- If sub-irrigated fertilize for high yield potential but apply P in fall
- On irrigated/wet meadows apply nutrients in spring
- Split N generally does not increase total yield
- If seeding on fallow, OM >3% provides adequate N for 2-3 years
- If N is banded or seed placed do not exceed 10-15 lb N/acre, also for P as ammoniumphosphate

Special considerations for forage fertilization

- Broadcast most effective on perennial stands deep banding OK on old alfalfa stands
- Late fall/early spring for cool season mix (except on sandy soil), mid-May for warm season mix
- In dryland consider 'build up' of P and K prior to seeding

Fertilization of annual legumes

Do you grow or advise on annual legumes for:

- 1. Forage/hay
- 2. Seed crop
- 3. Green manure
- 4. A mix of the above
- Do not grow or advise on annual legumes
 0 of 5

Phosphorus and potassium uptake

Nutrient	Peas, Lentils, Chickpeas	Wheat
Phosphorus (lb/bu)	0.67	0.62
Potassium (lb/bu)	0.87	0.38

P levels are often low in Montana (due to calcareous soils).

K levels are often moderate to high in Montana. No research located on K and legumes in region.

BOTH P and K needed for N fixation!

Effect of P on spring pea yield (2004-2005) Sidney

Montana phosphorus fertilizer guidelines for annual legumes

Olsen P (ppm) 0 to 6 inches	Application rate (lb P ₂ O ₅ /acre)
4	30
8	25
12	20
16	15
Above 16	0 up to crop removal*

* - Assume 2/3 lb P_2O_5 per bushel of grain

Why are P fertilizer needs of annual legumes somewhat less than for small grains and oilseeds?

- Lower yields
- Annual legume roots are shallowerbetter able to take advantage of higher P levels in upper 6 inches
 - Legumes lower soil pH, mobilizing P

Montana potassium fertilizer guidelines for annual legumes

Soil Test K (ppm) 0 to 6 inches	Application rate (lb K ₂ O/acre)
100	35
150	30
200	25

250	20
Above 250	0 up to crop removal*

* - Assume 0.87 lb K₂O per bushel of grain

Fertilizer placement for legumes

- No nitrogen (N) or potassium (K) fertilizer with the seed
- Small amounts of phosphorus (<10 lb P₂O₅/ac) with the seed
 - Ideal placement is below the seed

Rooting patterns and starter and deep band fertilizer placements

Conclusions

- Nitrogen, phosphorus, potassium, and sulfur can all produce growth responses in Montana forage.
- Economic benefits often aren't realized in the first year (so don't trust 1 year studies!).
- Soil testing is critical for determining fertilizer needs.

Questions?

Additional info at <u>http://landresources.montana.edu/soilfertility</u>