GALLATIN GARDENER CLUB APRIL 6, 2015

Clain Jones clainj@montana.edu 994-6076

College of AGRICULTURE MONTANA AGRICULTURAL EXPERIMENT STATION

EXTENSION

Hands-on is the best way to learn, but we'll use clickers because....

- 1. I just had my nails done33%
- Clicker training isn't just 33% for dogs
- There isn't enough dirt on 33% the floor to get a good soil sample

Why should home gardeners know something about soil nutrition?

- To grow healthy plants and tasty vegetables
- To protect the environment
- For efficient use of resources (water and \$)

Soil properties that influence water and nutrient availability

Soil property	Water	Nutrients
Texture/surface area	X	X
рН		X
CEC (cation exchange capacity)		Х
SOM (soil organic matter)	X	X

Soil pH – which is true?

- 1. Has no influence on33%nutrient availability
- 2. Is difficult to alter
- 3. Most vegetables preferpH > 7.5

33% 33%

Soil pH – which is true?

- 1. Has no influence on nutrient availability
- 2. Is difficult to alter
- Most vegetables prefer pH > 7.5

pH affects soil nutrient availability

Most Montana soils are:

- Generally alkaline (pH > 7.0)
- Generally acidic (pH < 7.0)
- "Gumbo" = too
 difficult to sample

Response

Counter

pH affects soil nutrient availability

Most Montana soils are:

- 1. Generally alkaline (pH > 7.0)
- Generally acidic (pH < 7.0)
- "Gumbo" = too
 difficult to sample

P, Fe, Mn, B, Cu & Zn might be limited

Why are MT soils high pH?

- Most MT soils are highly calcareous = alkaline
- Even if surface soil isn't alkaline, the subsoil usually is
- Liming to increase pH doesn't make sense in our soils
- Can I lower my soil pH? Can add elemental-S, but likely not economical, and soil S and salt levels may become too high

Mollisol – common in Montana and or semi-arid regions

CEC = Cation Exchange Capacity

- A measure of the soil's ability to hold onto and supply positive ions (e.g. NH₄⁺) to a crop
- Many essential plant nutrients carry positive charges. e.g., Potassium (K⁺) and Zinc (Zn⁺²)
- High CEC indicates a fertile soil which has the capacity to attract and hold these nutrients

SOM = Soil organic matter

- Is <6% of soil by weight but controls >90% of the function
- Has high surface area

What does SOM do for soil?

- Increase CEC
- Can't change soil pH or CEC of mineral soil very well, but can increase SOM to influence soil CEC and . . .

What else does SOM do for soil?

- As decomposes it releases nutrients bound in OM structure
- Holds water which helps nutrients move from soil to plant roots

SOM increases available water holding capacity

Questions?

How to evaluate soil nutrient status: Visual assessment of tissue

- May identify what has been lacking to this point
- Hopefully caught before too late to correct
- Other issues can cause symptoms that look like nutrient deficiency symptoms
 - Insects
 - Salinity
 - Moisture stress
 - Disease
 - Herbicides

Ontario Ministry of Ag., Food & Rural Affairs

How to evaluate soil nutrient status: soil test

- Tells you what is currently available in the soil
- Identifies nutrient deficiency or imbalance
- Helps calculate fertilizer rates
- Can increase yield and/or save on fertilizer costs, and decrease environmental risks

Illustration courtesy Government of Western Australia Dept. of Agriculture and Food

Soil testing

- Sample top 0-6 inches
- Combine 10 subsamples per 1000 sq. ft.
- Use probe, auger or tulip bulb planter
- Best done in early spring, but not when soil is wet, therefore in our climate perhaps best done in late fall (except this year)
- Air dry and send to reputable lab for analysis

FIGURE 2. Sample soil test report and fertilizer recommendations.

Name: Homeowner		Sample Date: April 9	9, 2007	
Lab Number: 12345		Your Sample Number: 1		
Crop to be Grown: Garder	ı	Sampling Depth: 0	to 6 inches	
Soil Test Res	ults	Interpretation	Recommendation	
Nitrate-N	12 lb/acre 6 ppm	Low	3 lb N/1000 sq ft	
Olsen Phosphorus	15 ppm	Medium	2 lb P ₂ 0 ₅ /1000 sq ft	
Potassium	192 ppm	Medium	1 lb K ₂ 0/1000 sq ft	
Sulfate-S	15 ppm	High		
Boron	0.5 ppm	Medium	0.02 lb B/1000 sq ft	
Copper	1.7 ppm	Very High		
Iron	47 ppm	Very High		
Manganese	10 ppm	Very High	<i>u</i>	
Zinc	1.3 ppm	High	~R	
Soluble Salts	0.3	Low		
Organic Matter	3.4%	Medium		
Soil pH	7.7	Medium/High		
CEC	17.8	Medium		
Soil Texture	Sandy Loam			

What if lab doesn't provide a recommendation (or is from another state)? Use Table 3 from MontGuide (MT200705AG)

Soil Test		Organic Matter (%)			
Nitrate - N	Location	< 1.5	1.5 – 3.0	> 3.0	
lbs /acre			lbs/1000 sq.ft.	,	
	Lawn	6	5	4	
<20	Tree/shrub	3	2	2	
	Garden	4	3	3	
	Lawn	4	3	2	
20-40	Tree/shrub	2	1	1	
	Garden	2	2	2	
	Lawn	2	1	1	
40-80	Tree/shrub	1	0.5	0	
	Garden	1	1	0.5	
>80	All	0	0	0	

Sample calculation

N required for soil with 3.4% organic matter and 12 lb N/acre soil test result (< 20 lb N/acre): **3 lb N/1000 sq ft** (Table 3)

APPLICATION RATE:

- Using a 10-15-10 fertilizer, 10% N (0.10 lb N/lb fertilizer), 15% $\rm P_2O_5$ and 10% $\rm K_2O$
- To calculate the amount of 10-15-10 fertilizer to apply: (Required Amount of N) ÷ (Amount N/lb Fertilizer) = Amount of Fertilizer to Apply /1000 sq ft
- (3 lb N/1000 sq ft) ÷ (0.10 lb N/lb fertilizer) = 30 lb of 10-15-10/1000 sq ft

Sample calculation continued: P and K

If you add 30 lb of 10-15-10/1000 sq ft

<u>How much P does this apply</u>? Fraction of P_2O_5 in 10-15-10 Fertilizer = 15% = 0.15 P_2O_5 /lb fert. 30 lb of 10-15-10/1000 sq ft x 0.15 = 4.5 lb P_2O_5 /1000 sq ft

How much K does this apply?

Fraction of K_2O in 10-15-10 fertilizer = 10% = 0.10 K_2O /lb fert. 30 lb of 10-15-10/1000 sq ft x 0.10 = 3 lb K_2O /1000 sq ft

Your turn

	OM %	Nitrate –N ppm	P ppm	K ppm	рН
Test	3.6	18	77	788	7.5

Using this data from a soil report and Table 3 from Montguide (slide x on your handout), how much N required for a garden? N ppm x 2 = N lb/acre

- 1. 3 lb/1000 sq. ft. 33%
- 2. 2 lb/1000 sq. ft. 33%
- **3.** 1 lb/1000 sq. ft. 33%

Response Counter

Your turn

	OM %	Nitrate –N ppm	P ppm	K ppm	рН
Test	3.6	18	77	788	7.5

Using this data from a soil report and Table 3 from Montguide (slide x on your handout), how much N required for a garden? N ppm x 2 = N lb/acre

- 1. 3 lb/1000 sq. ft.
- 2.) 2 lb/1000 sq. ft.
 - 3. 1 lb/1000 sq. ft.

Lab recommended initial 1.5 lb/1000 sq. ft. , with up to an additional 1 lb split evenly over the growing season

How much 10-10-15 fertilizer is needed?

(Required lb N = 2) \div (lb N/lb Fertilizer) = Amount of Fertilizer to Apply /1000 sq ft

1.	30	25%
2.	20	25%
3.	10	25%

4. Mental math at this hour?! 25%

How much 10-10-15 fertilizer is needed?

(Required lb N = 2) \div (lb N/lb Fertilizer) = Amount of Fertilizer to Apply /1000 sq ft

1. 30

3. 10

4. Mental math at this hour?!

(2 lb N/1000 sq ft) ÷ (0.10 lb N/lb fertilizer) = 20 lb of 10-10-15/1000 sq ft

P and K

	OM %	Nitrate –N ppm	P ppm	K ppm	рН
Test	3.6	18	77	788	7.5
Optimal maximum			30	500	

20 lb of 10-10-15/1000 sq ft

<u>How much P does this apply</u>? 20 lb of 10-10-15/1000 sq ft x 0.10 = **2 lb P₂O₅/1000 sq ft**

How much K does this apply?

20 lb of 10-10-15/1000 sq ft x 0.15 = **3 lb K₂O/1000 sq ft**

Is this advisable?

Both P and K are already high.

What can you do?

Questions?

Organic vs. conventional

• Feed the plant or feed the soil that feeds the plant

• Not all "organic" material is certified organic

Conventional/chemical

- No carbon
- Easy to store
- Higher nutrient concentration
- Custom formulated
- Easy to use
- Liquid or solid available

Compost/manure

- Bulkier
- Nutrient content low but diverse
- Nutrient content difficult to quantify
- Supplies organic matter

Both are available in forms that supply specific nutrients (e.g. bone/blood meal for P)

Application considerations

Conventional

- Apply and incorporate before maximum uptake which is BEFORE max biomass – most nutrients are in the plant early and move within plant to the maturing fruit
- Sideband P and K near, but not with the seed
- Side dress additional N mid season, if needed
- Organic material
 - Takes time to decompose and become available
 - N may be tied up in the short term

Considerations when fertilizing with manure

- Easy to over apply N, P, and K
- Rapid excess buildup of P and K if fertilizing to meet N needs
 - Of 67 Midwest gardens 92% had excess P and 88% excess K after just 1 to 6 years of 'uninformed' fertilization with composted dairy manure (Hansen unpub data, Ohio State Univ)
 - Feed to P and K demands
 - Use legumes or source such as blood meal to supply N

Approximately how much total N, P, and K does 1" of manure compost supply?

		Ν	P_2O_5	K ₂ O	
		II	os/1000 sc	ı. ft.	
	Removed annually	3.4	0.3	3.2	
1.	Added by 1" manure	40	15	40	50%
2.	Added by 1" manure	6	1	6	50%
Resp Cou	oonse unter				

Approximately how much total N, P, and K does 1" of manure compost supply?

		Ν	P_2O_5	K ₂ O		
		II	lbs/1000 sq. ft.			
	Removed annually	3.4	0.3	3.2		
1.	Added by 1" manure	40	15	40		
2.	Added by 1" manure	6	1	6		

Nutrients removed by one season's harvest of the edible portion of garden vegetables

Crop	Ν	P ₂ O ₅	N:P ratio
	lbs/100		
Broccoli	3.8	0.2	37:1
Lettuce	2.2	0.3	18:1
Pepper	3.2	0.3	26:1
Sweet corn	3.6	0.5	18:1
Tomato	4.1	0.5	19:1
Average	3.4	0.3	23:1

One local composted manure tested had a total N:P of 6:1

Morris, Ping, and Durgy. University of Connecticut.

http://www.newenglandvfc.org/pdf_proceedings/SoilOrganicAmend.pdf

Adding organic material is good, but...

how can you increase soil organic matter without adding too much P and K?

- Add organic matter high in C (dry leaves, wood shavings, straw, peat), but remember, high C ties up N
- Add organic matter based on plant's P needs and add N with chemical fertilizer, organic fertilizer such as blood meal, or plant legumes

Questions?

Summary

- Understanding soils leads to wise nutrient use and promotes maximum plant health and yields
- Soil testing is an important tool to help prevent or correct plant growth problems
- The foundation of a healthy garden is a healthy soil
- With good soil fertility you can grow big pods

For additional information on:

Home garden soil testing and fertilization guidelines

http://landresources.montana.edu/soilfertility/home-gardening.html

Soil testing (Module 1) Nutrient deficiency symptoms (Module 9)

http://landresources.montana.edu/NM/Modules/