SOIL FERTILITY CONSIDERATIONS FOR HOME GARDENS

Ag Extension Agent Training

October 22, 2014

Clain Jones clainj@montana.edu 994-6076

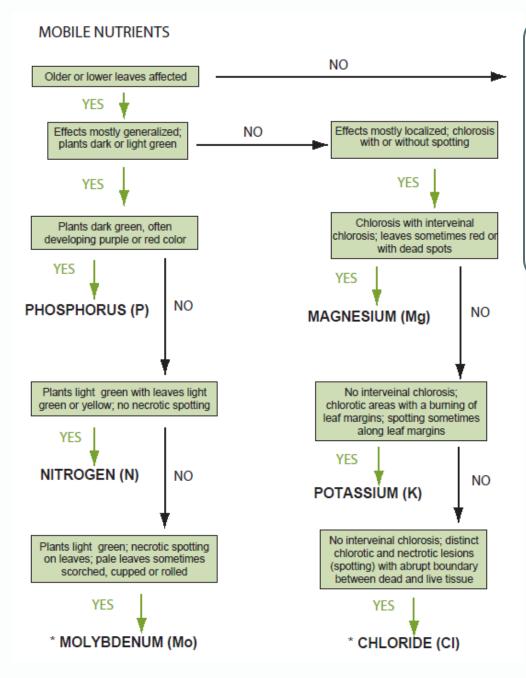
Today's objective

 Present you with a path to answer common garden soil questions

"My plants don't look healthy. What's wrong?"

- Ask for background information (list on next slide)
- Ask for photograph, see if you or someone at Schutter lab can diagnose quickly over phone or email (possibly using nutrient deficiency key – following 2 slides)
- If can't diagnose, send sample to Schutter Diagnostic
 Lab
- If determined to be an 'abiotic' cause, help gardener collect a soil (or tissue) sample and get it sent to an analytical lab
- Interpret soil or tissue sample results, possibly w/ Clain's help

Background information to help diagnose problem


- Plant and variety
- Location (greenhouse, field, windbreak, home garden)
- Irrigation practices (type of system, frequency, amount applied)
- Plant history (age, size)
- Fertilizer/amendments source, rate, timing, placement
- Pesticides/herbicides used with names, rates, dates
- Weather conditions
- Pattern of symptoms on the plant and surrounding plants
- Previous problems in this location

Visual tissue assessment

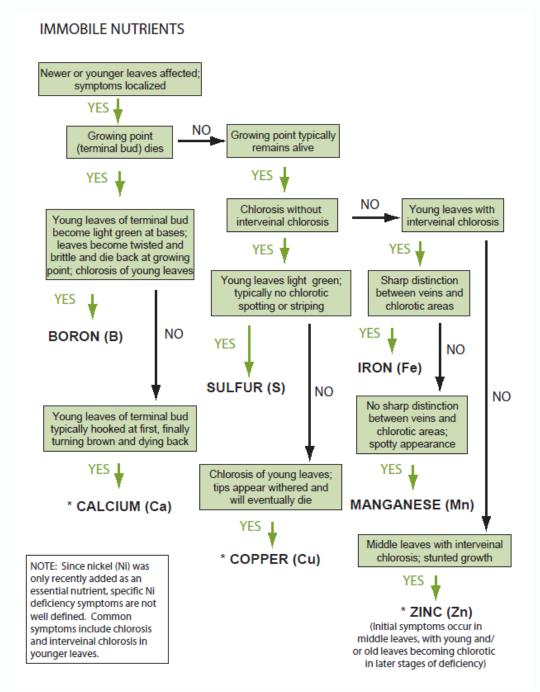
Nutrients that are mobile in the plant will affect lower leaves first.

These include:

- Nitrogen (N)
- Phosphorus (P)
- Potassium (K)
- Chloride (Cl)

IMMOBILE NUTRIENTS

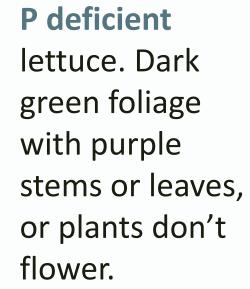
Boron
Calcium
Copper
Iron
Manganese
Sulfur
Zinc


Visual tissue assessment

Immobile nutrients will affect young leaves first

These include:

- Boron
- Calcium
- Copper
- Iron
- Manganese
- Sulfur
- Zinc


http://landresources.montana.edu/NM/Modules/NM9.pdf

N deficient basil.

Lower leaves are more yellow than upper leaves.

S deficient field pea. New leaves are yellow.

Pseudo-deficiencies

What else can cause symptoms that look like nutrient deficiency symptoms?

- 1. Insects
- 2. Salinity
- 3. Moisture stress
- 4. Disease ———
- 5. Herbicides -----

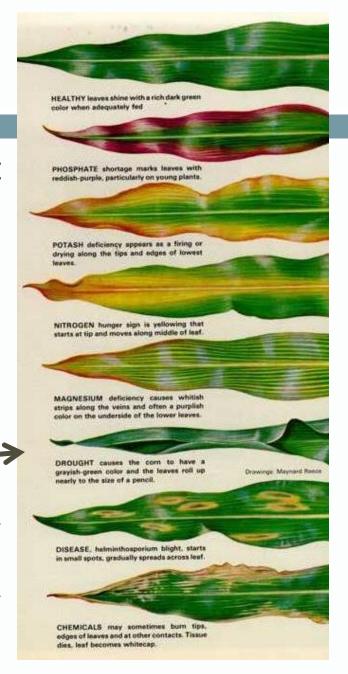


Photo: Ontario Ministry of Ag., Food & Rural Affairs

"Why should I soil test?"

- To identify nutrient deficiency or imbalance hopefully BEFORE it affects plants
- To help calculate fertilizer rates
- Can increase yield and/or save on fertilizer costs, and decrease environmental risks
- See Home Garden Soil Testing & Fertilizer
 Recommendations (MT200705AG) for details

FIGURE 2. Sample soil test report and fertilizer recommendations.

Name: Homeowner Sample Date: April 9, 2007

Lab Number: 12345 Your Sample Number: 1

Crop to be Grown: Garden Sampling Depth: 0 to 6 inches

orop to be drown: darden		Camping Depart of to o mones		
Soil Test Results		Interpretation	Recommendation	
Nitrate-N	12 lb/acre 6 ppm	Low	3 lb N/1000 sq ft	
Olsen Phosphorus	15 ppm	Medium	2 lb P ₂ O ₅ /1000 sq ft	
Potassium	192 ppm	Medium	1 lb K ₂ 0/1000 sq ft	
Sulfate-S	15 ppm	High		
Boron	0.5 ppm	Medium	0.02 lb B/1000 sq ft	
Copper	1.7 ppm	Very High		
Iron	47 ppm	Very High		
Manganese	10 ppm	Very High		
Zinc	1.3 ppm	High		
Soluble Salts	0.3	Low		
Organic Matter	3.4%	Medium		
Soil pH	7.7	Medium/High		
CEC	17.8	Medium		
Soil Texture	Sandy Loam			

Limiting soil nutrient levels in top 6 inches

Nutrient	Limiting	High	
N	Crop and soil organic matter dependent		
	<20 lb N/acre	>80 lb N/acre = adequate	
Р	< 8 ppm	> 30 ppm very high	
K	< 150 ppm	> 500 ppm very high	
S	Not available –tissue testing better		
В	< 0.5 ppm	> 5 ppm = toxic	
Cl	Not available		
Cu	< 0.25 ppm	> 0.5 ppm	
Fe	< 2.5 ppm	> 5.0 ppm	
Mn	< 0.5 ppm	>1.0 ppm	
Zn	< 0.25 ppm	> 60 ppm = toxic	

What if lab doesn't provide a recommendation (or is from another state)?

- Use tables 3, 4, and 5 (for N, P, K respectively) in Home Garden Soil Testing & Fertilizer Recommendations (MT200705AG)
- Calculate fertilizer application rate following example calculation in MT200705AG

Considerations when fertilizing with manure

- Easy to over apply N, P, and K
- Rapid excess buildup of P and K if fertilizing to meet N needs

After just 1 - 6 years of 'uninformed' fertilization with composted dairy manure, what % of 67 gardens had excess P and K?

- <25
- 25 50
- 50 75
- >75

92% had excess P and 88% excess K

(Hansen unpub data, Ohio State Univ.)

Approximately how much total N, P, and K does 1" of manure compost supply?

	N	P_2O_5	K ₂ O	N:P	
	lbs	lbs/1000 sq. ft.			
Removed annually by vegetables		0.3	3.2	23:1	
Added by 1" manure	40	15	40	5.5:1	

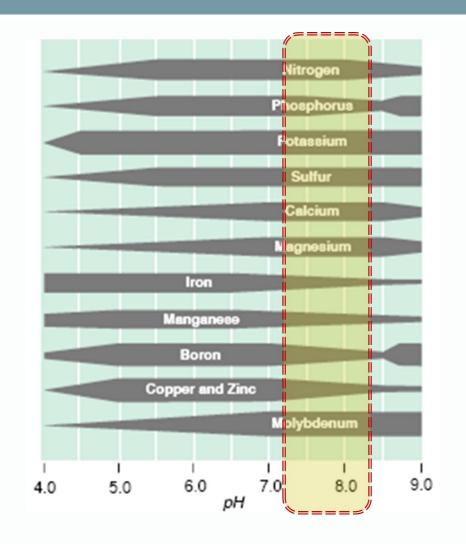
Take home message: 1" of manure can supply vegetable nutrient needs for at least 10 years.

"How can I increase soil organic matter and N without adding too much P and K?"

- Add organic material high in C (dry leaves, wood shavings, straw, peat moss), but remember, "C ties up N"
- Add organic material based on plant's P and K needs
- Supply N with chemical fertilizer, organic fertilizer such as blood meal, or plant legumes

Which is true about using legumes to supply N?

- 1. Legumes fix very little of their own N if soil N is sufficient
 - 2. Legume seeds must be inoculated before planting
 - 3. The rhizobia that help legumes fix N are not legume specific
- 4. Soil critters not used to legumes get digestive upset



"How can I lower P and K if too high?"

- Dilution with sand is about only way. Or starting a new garden spot.
- Prevention. Stop adding manure.

"Why is high pH bad for nutrient availability?"

- Most MT soils are highly calcareous = alkaline
- This reduces soil P and metal micronutrient availability

"Can I lower pH if too high?"

- Plants can do well at pH 8, but make sure P and metal micronutrients are adequate
- If pH>7.8, can lab test for CaCO₃
 - If CaCO₃ > 0.5% will take too much sulfur (S) or acid or time to lower pH
 - If CaCO₃ < 0.5%, it might be possible
- If pH <7.8, likely have low or no CaCO₃ and could try adding elemental S (3 to 10 lb/1000 sq ft). Mix in. Recheck pH.

Summary: things to look at in your client's soil

Item	Why	What to do	
N	Lost to leaching or tied up by straw, sawdust, bark mulch	Add OM, blood/fish meal, legumes in rotation	
P and K	Manure provides much more than needed	If high, dilute with sand; no more manure	
Soil organic matter (SOM)	>8% may indicate too much manure, 5-8% is suitable	Add if low; add small amounts if high to maintain tilth/aggregation	
рН	>8 may be too high, ideal is 5.8-7.5 (depending on crop) for nutrient availability	In calcareous soils not much can be done to change	
Salts (Electrical conductivity; EC)	>4 mmhos/cm or dS/m may be damaging	sprinkler rather than drip irrigate to flush out, if irrigation water isn't source of high salts	

Promote healthy soils

- Minimize rototilling, especially when soil is wet
- Keep planted or covered with plant residue/mulch all year
- Rotate crops and include legumes
- Add organic matter regularly but not too much at a time (1/4" every two years should be enough)
- Be careful with herbicides and pesticides

Questions?

For more information on soil fertility see Clain's website:

http://landresources.montana.edu/soilfertility/