Nitrogen Management for Grain Yield and Protein

Great Falls, Montana Dry Fork Ag Workshop December 17, 2015

Clain Jones clainj@montana.edu 994-6076

MSU Soil Fertility Extension

Todays objectives – 4Rs of nitrogen

ECONONIC

ENVIRONMENTAL

Rate

Place

SOCIAL

Source

Time

- Steps towards calculating an N rate
- Timing
- Source & legume rotations
- Placement

Realistic yield goal

- Use variety selection tools
- Past yields indication of future performance
- Having ability for inseason N application allows conservative yield estimate for preplant rate

Residual soil N: Timing of soil sampling

- Nitrogen fertilizer guidelines are based on spring soil samples for nitrate in Montana
- BUT, most sampling in MT occurs from late summer to late fall

Why is this a potential problem?

Soil nitrate can increase or decrease from November to April, Montana data based on 180 samples (Jones et al. 2011)

April - Previous November Nitrate Change (lb N/ac)

Fall soil tests can lead to over or under-fertilized fields

Compare fall with spring a few times to see patterns of loss or gain for given pastures/rotation

Historical average AVAILABLE N rate guideline: when soil organic matter = 2%

Dryland winter wheat
2.6 lb N/bu @ 12.5% protein

- Spring wheat
 3.3 lb N/bu @ 14% protein
- MSU N rate calculation tool takes into account fertilizer costs, grain prices, and protein discounts to optimize net revenue.

http://www.msuextension.org/econtools/nitrogen/index.html

Evaluate N management

- If winter wheat protein < 12.5%, likely yield limited by lack of N
- To gain 1 protein point (%) in winter wheat:
 - + 22 lb N/ac with < 6" growing season precip</p>
 - + 33 lb N/ac with > 12" growing season precip
- If spring wheat protein < 13.2%, likely yield limited by lack of N

Variable rate N application (Zone or site specific farming)

- At this time economic advantage is inconsistent
- At simplest, divide field into zones of low, med, high productivity
- NDSU has bulletin series on Zone farming SF1176 series at <u>www.ag.ndsu. edu/publications</u>

Image adapted from IPNI 2012

N rate adjustments

- Stubble: small grains stubble high carbon to N (C:N). Adjust fertilizer N up or down?
 10 lb N/1000 lb stubble up to 40 lb N
- Fallow: assume ½ of stubble has decomposed over previous year when adjusting
- After legume rotation: Adjust fert up or down? Legumes credit (add) N

Сгор	N credit (lb N/acre)
Alfalfa	40
Annual legume 1 x	~10
Annual legume >3 x	~20

N rate adjustments (cont)

• SOM

- <1% SOM, add 15-20 lb N/acre</p>
- >3% SOM, reduce 15-20 lb N/acre

 Tillage – No-till may require extra N for 6 to 15 years. Finer soils require longer end.

Questions?

On to Timing

N uptake by wheat for yield and protein

Plant Growth →

Timing depends on source

- Readily available [urea (46–0–0), urea ammonium nitrate (28–0–0)]
 - shortly before seeding up to mid-tillering
- Slowly available (manure, slow-release N)
 - take time to become available
 - apply well before needed e.g. fall

Use Nutrient Uptake figure to time top-dress

Example on per acre basis:

- 165 lb N total need
- 40 lb N in soil + 60 lb preplant N = 100 lb N
 = 60% total N required (100/165=0.60)
- (165 100) = 65 lb N needed to top-dress

Top-dress amount and timing based on wheat growth stage

Plant Growth \longrightarrow

Split/In-season N Applications

- Fall broadcast supplies early growth needs
- In-season adjustment for estimated yield potential based on precip to date
 - Don't apply 2nd application if dry or substantial disease
 - Apply large 2nd application if wet
 - Use chlorophyll meters (e.g., SPAD, GreenSeeker, and Crop Circle) and remote-sensing technologies to guide in-season N adjustments
- Later applications:
 - Potential to increase protein rather than yield

In-season N rate, timing, and dryland vs. irrigation affects protein boost

Late-season N Added (lb N/bu yield)

Ability to incorporate with rain or irrigation more important than exact timing at flowering

Broadcast before rain or irrigation (to minimize volatilization loss)

Late season N cautions

- High late season N on irrigated wheat – lodging
- After stem elongation less chance of lodging
- If risk of scab, avoid application within 5 days of flowering if irrigated or expected rainfall

To apply late season or not?

- Flag leaf N concentration (sampled at heading) < 4.2%
- Chlorophyll readings
 - Irrigated spring wheat at heading < 93
 to 95% of well-fertilized reference plot

 Not a reliable tool in dryland winter wheat in our region

Protein increase gained by top-dressing 40 lb N/acre at heading on SW increases at lower flag leaf N

Relationship between protein response to N topdressed and flag leaf N in irrigated sw. Fertilizer Fact 12

Flag leaf sampling

• When?

Collect at first sign of flowering

• Numbers?

Randomly select 50-75 flag leaves per field

• How and where send?

Overnight to a lab w/ fast turnaround (e.g., 1 day turn-around)

 Is this a common way to determine whether to topdress or is it Clain's hair brain idea? Agvise analyzed ~15,000 flag leaf samples in 2009 and ~30,000 in 2010 (Dietrich, pers. comm.)

Questions?

On to Source and Placement

Different N sources have different volatilization and leaching loss potential **POTENTIAL** loss compared to

	urea	
Source	Volatilization	Leaching
Conventional		
Ammonium nitrate, CAN, ammonium sulfate	less	~
UAN (solution 28 or 32)	less	~
Enhanced Efficiency Fertilizers (EEFs)		
Urease inhibitors (NBPT: Agrotain, ContaiN)	less	~
Nitrification inhibitors (DCD: Guardian DF; nitrapyrin: N-Serve, Instinct)	~	less
Combinations (SuperU)	less	less
Controlled release polymer coated (ESN)	less	less
Slow release (Nitamin, N-Sure, N-Demand)	~	less?

NBPT with broadcast urea can increase WW grain protein

Coffee Creek, MT Engel unpub data NBPT sig increased protein by about 0.4 to 0.8% points for both years. NBPT only increased yield in Fall 2012.

EEFs increase safe rate with seed

Slow- and controlled-release for the northern Great Plains

- No consistent benefit shown
- Fall broadcast controlled release may increase yield over broadcast urea, especially in a wet year when urea may leach overwinter
- If fall application to reduce spring workload is important, then extra cost might be worth it
- Release tends to be too slow with late winter to early-spring application (McKenzie et al., 2007)
- Consider blending with urea

Nitrification inhibitors

- Potential benefit with fallbanded urea where:
 - high precip with leaching in sandy soils
 - denitrification (nitrate → N₂ gas) in water logged/clay soils

- Benefits less likely in dry or well drained soils
- An alternative is fall subsurface large urea granules

Urea conversion to nitrate is faster when soil is wet and warm

Chen et al. 2010, clay-loam pH 8.3

Inhibitors can delay denitrification (nitrate \rightarrow N₂ gas)

Tiessen et al. 2006, Manitoba, clay-loam

Nitrapyrin slows dairy manure nitrification

Calderon et al. 2005, silt-loam, pH 6.1, soil water content 68% pores filled, incubated at 72F

Instinct II reduces fertilizer conversion in soil to nitrate (nitrification inhibitor)

P. Miller, unpub data, 2015 MSU Post Farm, 16" rainfall zone

N banded 2" below surface

Instinct II: dryland spring wheat grain yield

P. Miller, unpub data, MSU Post Farm, 16" rainfall zone. 2015 was drier than average.

N banded 2" below surface

Under irrigation, Instinct II reduced NO₃⁻ available in the soil

Scherder et al., 2015, Ephrata, WA, 7.4", UAN sidedress dribble stream bar

In dryland, Instinct II had no influence on NO₃⁻ available in the soil

Scherder et al., 2015, Plaza, WA, 16" precip., urea preplant incorporated

Winter wheat grain yield increased with Instinct II[®] under irrigation (but not dryland)

Irrigated

Dryland

Scherder et al., 2015, inland Pacific NW UAN sidedress dribble stream bar, urea preplant incorporated

Legume cover crops

 Terminate by first bloom

 Comprise 50% of ccrop to provide plant available N (PAN)

Willamette Valley, Oregon Sullivan and Andrews, 2012

After 4 rotations pea GM provides same net return as fallow, with less N

Considerations when fertilizing with manure

- Nutrient content is highly variable
- May provide more P and K than needed
- High N can reduce N-fixation by legumes
- Takes time to release nutrients
- Nutrients can be easily leached through the soil profile or volatilized if left on the surface
- May introduce weed seeds and contain residual herbicide
- Weight and bulk of transporting and applying wet manures to fields

Nutrient content of manure is variable

Knott's Handbook for Vegetable Growers 1997

Approximately how much total N, P, and K does 1/2" of manure compost supply?

	Ν	P_2O_5	K ₂ O	
Removed by:	lbs/acre			
1 season vegetables/acre	150	15	140	
40 bu/acre wheat grain (dryland)	50	25	15	
90 bu/acre wheat grain (irrigated)	113	56	34	
1. Added by 1/2" manure	875	325	875	
2. Added by 1/2" manure	150	20	150	

Nutrients removed by one season's harvest (irrigated)

Crop	Ν	P ₂ O ₅	K ₂ O	N:P:K ratio	N:P:K if meet N w/ manure
	lbs/acre				
Vegetable (edible portion)	150	15	140	23:1:18	23: <mark>3.5</mark> :19
Wheat grain (90 bu/acre)	113	56	34	4.5:1:1	4.5:0.7: <mark>4</mark>
Pea (70 bu/acre)	153	47	61	7:1:2.5	7:1.2: <mark>6</mark>
Alfalfa (3 ton/acre)	144	33	159	10:1:9	10: <mark>1.5:8</mark>
Manure (1/2")	875	325	875		6:1:5

If feed to N needs, watch P and K

Manure takes time to provide nutrients and available N from manure depends on source

MSU EB0200

Placement

- Urea and ammonium based fertilizers best subsurface placed
- Safe rates for seed placed
 - On-line resources to calculate
 - 50% higher with NBPT
 - 2-4 x higher with polymer coated
- Foliar application
 - Use practices to min leaf burn
 - < 30 lb N/ac of UAN</p>
 - < 45 lb N/ac of liquid urea</p>
 - Use less with herbicide, surfactant, sulfur, NBPT

 Use realistic yield goals and soil test N to calculate pre-plant N rate ENVIRONMENTAL

SOCIAL

ECONOMIC

- Adjust in-season for given year
- Apply early for yield, later for protein
- Select the source appropriate for conditions
- Use on-line tools for variety selection, optimal N rate, safe seed-placed rates, manure rates

Resources

- Variety selection tool www.sarc.montana.edu/php/varieties/
- N rate calculation tool <u>http://www.msuextension.org/econtools/nitrogen/index.html</u>
- On soil fertility website
 <u>http://landresources.montana.edu/soilfertility/</u>
 - Safe rates for seed-placed under Agriculture Links
 - Manure rate calculators under Agriculture Links
- Under Extension Publications
 - Nutrient Management in No-Till (EB0182)
 - Enhanced Efficiency Fertilizers (EB0188)
 - Nutrient Uptake and Timing by Crops (EB0191)
 - Practices to Increase Wheat Grain Protein (EB0206)

QUESTIONS?

This presentation and additional information on soil fertility topics is available at http://landresources.montana.edu/soilfertility

Photo by Andrew John