### Nitrogen Management for Grain and Protein

## MABA Convention January 29, 2016

#### Clain Jones <a href="mailto:clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@clain@cl



MSU Soil Fertility Extension

## Todays objectives – 4Rs of nitrogen

- Steps towards calculating an N rate
- Timing
- Source & legume rotations
- Placement



## Realistic yield goal

- Use variety selection tools
- Past yields indication of future performance
- Having ability for inseason N application allows conservative yield estimate for preplant rate



## Residual soil N: Timing of soil sampling

- Nitrogen fertilizer guidelines are based on spring soil samples for nitrate in Montana
- BUT, most sampling in MT occurs from late summer 51%

Based on 35 'clicker' responses at MABA 2010 Convention, when asked when crop advisers do most of their soil sampling:

Why is this a potential problem?



Soil nitrate can increase or decrease from November to April, Montana data based on 180 samples (Jones et al. 2011)



April - Previous November Nitrate Change (lb N/ac)

Fall soil tests can lead to over or under-fertilized fields



Compare fall with spring a few times to see patterns of loss or gain for given pastures/rotation

Historical average AVAILABLE N rate guideline: when soil organic matter = 2%

Dryland winter wheat
2.6 lb N/bu @ 12.5% protein



- Spring wheat
  3.3 lb N/bu @ 14% protein
- MSU N rate calculation tool takes into account fertilizer costs, grain prices, and protein discounts to optimize net revenue.

http://www.msuextension.org/econtools/nitrogen/index.html

## Evaluate N management

- If winter wheat protein < 12.5%, likely yield limited by lack of N
- If spring wheat protein < 13.2%, likely yield limited by lack of N
- To increase wheat protein by 1 point, apply ~0.75 lb N/bu before flower for dryland ~ 0.5 lb N/bu for irrigated

For more detail, see "*Practices to increase wheat grain protein*" EB0206.

Variable rate N application (Zone or site specific farming)

- At this time economic advantage is inconsistent (and hard to study)
- At simplest, divide field into zones of low, med, high productivity
- NDSU has bulletin series on Zone farming SF1176 series at <u>www.ag.ndsu. edu/publications</u>





Image adapted from IPNI 2012

## N rate adjustments

- Stubble: small grains stubble high carbon to N (C:N). Adjust fertilizer N up or down?
   10 lb N/1000 lb stubble up to 40 lb N
- Fallow: assume ½ of stubble has decomposed over previous year when adjusting
- After legume rotation: Adjust fert up or down? Legumes credit (add) N

| Crop               | N credit<br>(lb N/acre) |
|--------------------|-------------------------|
| Alfalfa            | 40                      |
| Annual legume 1 x  | ~10                     |
| Annual legume >3 x | ~20                     |

## N rate adjustments (cont)

### • SOM

- <1% SOM, add 15-20 lb N/acre</p>
- >3% SOM, reduce 15-20 lb N/acre

 Tillage – No-till may require extra N for 6 to 15 years. Finer soils require longer end.



## Questions?

## On to *Timing*

#### N uptake by wheat for yield and protein



Plant Growth →

## Timing depends on source

- Readily available [urea (46–0–0), urea ammonium nitrate (28–0–0)]
  - shortly before seeding up to mid-tillering
- Slowly available (Manure, slow-release N)
  - take time to become available
  - apply well before needed e.g., fall

#### Timing can affect volatilization loss from urea Worst case: broadcast on moist surface followed by light scattered precipitation



Fertilizer eFact 70

Date of urea broadcast

## Use Nutrient Uptake figure to time top-dress

## Example on per acre basis:

- 165 lb N total need
- 40 lb N in soil + 60 lb preplant N = 100 lb N = 60% total N required (100/165)
- (165 100) = 65 lb N needed to top-dress

Nutrient uptake figures are available at

http://landresources.montana.edu/soilfertility/nutuptake.html

# Top-dress amount and timing based on wheat growth stage



Plant Growth  $\longrightarrow$ 

## Split/In-season N Applications

- Fall broadcast supplies early growth needs
- In-season adjustment for estimated yield potential based on precip to date
  - Don't apply 2<sup>nd</sup> application if dry
  - Apply large 2<sup>nd</sup> application if wet
  - Use chlorophyll meters (e.g., SPAD, GreenSeeker, and Crop Circle) and remote-sensing technologies to guide in-season N adjustments
- Later applications:
  - Potential to increase protein rather than yield

# In-season N rate, timing, and dryland vs. irrigation affects protein boost



Late-season N Added (lb N/bu yield)

Ability to incorporate with rain or irrigation more important than exact timing at flowering

# Broadcast before rain or irrigation to minimize volatilization loss



## Late season N cautions

- High late season N on irrigated wheat lodging
- After stem elongation less chance of lodging
- If risk of scab avoid within 5 days of flowering if irrigated or expected rainfall





## To apply late season or not?

- Flag leaf N concentration (sampled at heading) < 4.2%</li>
- Chlorophyll readings
  - Irrigated spring wheat at heading < 93 to 95% of well-fertilized reference plot
  - Not a reliable tool in dryland winter wheat in our region





Protein increase gained by top-dressing 40 lb N/acre at heading on SW increases at lower flag leaf N



Relationship between protein response to N topdressed and flag leaf N in irrigated sw. Fertilizer Fact 12

## What is the 'critical flag leaf N'?

- Critical FLN = FLN below which should top-dress N to maximize profit (and above which should result in a loss).
- Critical FLN = 4.2 0.18(N cost in \$/lb N)/(protein discount per point)
  - -0.18 is application rate from study (40 lb N/ac) divided by yield in the study (73 bu/ac) divided by slope of response on previous figure (-3)
  - Example 1: If ratio of N cost to discount = 1.5 (May 2012), critical FLN = 3.9%.
  - Example 2: If ratio of N cost to discount = 4 (current for ww), critical FLN = 3.2% (rarely this low).
- Bottom line: need far lower FLN to justify top-dressing for protein IF ratio of fertilizer cost to discount is high.

## Flag leaf sampling

#### • When?

Collect at first sign of flowering

#### • Numbers?

Randomly select 50-75 flag leaves per field

#### • How and where send?

Overnight to a lab w/ fast turnaround (e.g., 1 day turn-around)

 Is this a common way to determine whether to topdress or is it Clain's hair brain idea? Agvise analyzed ~15,000 flag leaf samples in 2009 and ~30,000 in 2010 (Dietrich, pers. comm.)

## Questions?

## On to Source and Placement

## Different N sources have different volatilization and leaching loss potential **POTENTIAL** loss compared to

|                                                                 | urea           |          |
|-----------------------------------------------------------------|----------------|----------|
| Source                                                          | Volatilization | Leaching |
| Conventional                                                    |                |          |
| Ammonium nitrate, CAN, ammonium sulfate                         | less           | ≈        |
| UAN (solution 28 or 32)                                         | less           | ~        |
| Enhanced Efficiency Fertilizers                                 |                |          |
| Urease inhibitors (Agrotain)                                    | less           | ~        |
| Nitrification inhibitors (DCD, N-Source, N-<br>Serve, Instinct) | ~              | less     |
| Combinations (SuperU)                                           | less           | less     |
| Controlled release polymer coated (ESN)                         | less           | less     |
| Slow release (Nitamin, N-Sure, N-Demand)                        | ~              | less?    |

## NBPT with broadcast urea can increase WW grain protein



## EEFs increase safe rate with seed



Slow- and controlled-release for the northern Great Plains

- No consistent benefit shown
- Fall broadcast may increase yield over broadcast urea, especially in a wet year when urea may leach overwinter
- If fall application to reduce spring stress is important, then extra cost might be worth it
- Release tends to be too slow with late winter early-spring application
- Consider blending with urea

## Nitrification inhibitors

- Potential benefit with fallbanded urea where:
  - high precip with leaching in sandy soils
  - denitrification (nitrate → N<sub>2</sub> gas) in water logged/clay soils



- Benefits less likely in dry or well drained soils
- An alternative is fall subsurface large urea granules

Instinct II (nitrification inhibitor) reduces fertilizer conversion in soil to nitrate



P. Miller, unpub data, 2015 MSU Post Farm, 16" rainfall zone

N banded 2" below surface

Winter wheat grain yield increased with Instinct II<sup>®</sup> under irrigation (but not dryland)



Irrigated

Dryland

Scherder et al., 2015, inland Pacific NW UAN sidedress dribble stream bar, urea preplant incorporated

## Species diversity: does it increase benefits?



#### **Nitrogen Fixers**

Spring Pea Common Vetch Lentil Increase nitrogen

Add soil carbon



#### Fibrous Root

Oats Italian ryegrass Proso millet Reduce compaction, move nutrients upward

#### Potential disease control



#### Tap Root

Purple top turnip Safflower



**Brassica** 

Daikon radish Winter canola Camelina Spring wheat yield at Dutton vs previous year total biomass (cc + weed)



Cover Crop + Weed Biomass (ton/acre)

Housman, Tallman, et al., unpub data, Dutton

What about soil health?

## Legume cover crops

 Terminate by first bloom





 Comprise 50% of ccrop to provide plant available N (PAN), especially if terminated late

Willamette Valley, Oregon Sullivan and Andrews, 2012

Cover Crop Cocktail Farm Study: 1 rotation of mixed CC reduced grain yield in 4 of 6 production years



Location and Year

Yield less after mixed cover crops on farmers' fields, likely due to late termination and high water & N use by CCrop

Cover Crop Cocktail Farm Study: 1 rotation of mixed CC produced varied grain protein results





Cover Crop Cocktails Farm Study: Take home messages on yield and protein

- Spring wheat grain yield was lower after CC than fallow in four of six field-scale studies, and protein results were mixed.
- High water use from late termination was likely cause of yield differences.

Not a stellar outlook for cover crops in short term, what about long term? 8-year plot study

#### Legume or fallow year

#### Wheat year



## 8-year Plot Study

- Long-term effects of no-till pea forage/legume cover cropwheat vs. fallow-wheat
- ~16" annual precip on deep soils & ability to recharge soils
- Pea forage grown in 2003, 05, 07 and pea CC grown in 2009, terminated at full pod
- Spring or winter wheat planted in even years. 2010 was wettest of wheat years, 2012 record drought.
- 2 N rates: Full (3 lb available N/bu) and ½ N
- NO differences in wheat yield following CC and following fallow in 2004, 2006, 2008, and 2012, and large benefit of CC in 2010



## 8 Year Plot Study: Grain yield in 8<sup>th</sup> year (2010)





## 8 Year Plot Study: Grain protein in 8<sup>th</sup> year





After 4 rotations pea GM provides same net return as fallow, with less N



Miller et al., 2015

## Placement

- Urea and ammonium based fertilizers best subsurface placed
- Safe rates for seed placed
  - On-line resources to calculate
  - 50% higher with NBPT
  - 2-4 x higher with polymer coated
- Foliar application
  - Use practices to min leaf burn
  - < 30 lb N/ac of UAN</p>
  - < 45 lb N/ac of liquid urea</p>
  - Use less with herbicide, surfactant, sulfur, NBPT







 Use realistic yield goals and soil test N to calculate pre-plant N rate ENVIRONMENTAL

SOCIAL

ECONOMIC

- Adjust in-season for given year
- Apply early for yield, later for protein
- Select the source appropriate for conditions
- Use on-line tools for variety selection, optimal N rate, safe seed-placed rates



- Variety selection tool <a href="http://www.sarc.montana.edu/php/varieties/">www.sarc.montana.edu/php/varieties/</a>
- N rate calculation tool <u>http://www.msuextension.org/econtools/nitrogen/index.html</u>
- On soil fertility website <u>http://landresources.montana.edu/soilfertility/</u>
  - Safe rates for seed-placed under Agriculture Links
- Under *Extension Publications* 
  - Nutrient Management in No-Till (EB0182)
  - Enhanced Efficiency Fertilizers (EB0188)
  - Nutrient Uptake and Timing by Crops (EB0191)
  - Practices to Increase Wheat Grain Protein (EB0206)

## **QUESTIONS?**

This presentation and additional information on soil fertility topics is available at http://landresources.montana.edu/soilfertility

Photo by Andrew John