SOIL NUTRIENT LEVELS AND SOIL pH TRENDS

MABA Convention

January 25, 2019

Clain Jones clainj@montana.edu 994-6076; and Rick Engel

MSU Soil Fertility Extension

Image by K Olson-Rutz
Today’s topics

• Trends in soil nutrient levels
• Limitations of soil tests
• Effect of soil pH on soil nutrients
• Changing soil pH on MT croplands
• Management options with acidifying soils

The Montana Fertilizer Advisory Council and the Western Sustainable Agriculture Research and Education Program are major funding sources for MSU studies.
For sustainable, healthy production

INPUTS
- Fertilizer
- Manure
- N-fixation by legumes
- Mineral soil/organic matter

OUTPUTS
- Harvest
- Erosion
- Runoff
- Leaching

NUTRIENTS

In many ag systems, outputs > inputs = mining the soil for nutrients
Nutrient harvest vs fertilizer applied in Manitoba, 1965-2010

Nitrogen: soil reserves depleted long time ago

K\textsubscript{2}O: soil sustains needs for now, issues may arise on coarse soils with high K demand crops

P\textsubscript{2}O\textsubscript{5}: recent trend is greater removal than application

Heard, 2011

Average available N at 0-2 and > 2 ft depth in Golden Triangle over past 20 years

Guesses what caused these differences?

Data provided by AgVise
Average 0-6” Olsen P in MT: no strong trend over 20 years

Data provided by AgVise
Average 0-6” K in MT over past 20 years

Data provided by AgVise
Selected total and available micronutrients in MT surface soils in past 38 years

<table>
<thead>
<tr>
<th>Nutrient</th>
<th>1979* (n=301)</th>
<th>2017** (n=4000-10,500)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total</td>
<td>Available</td>
</tr>
<tr>
<td></td>
<td>(ppm in top 0-6”)</td>
<td></td>
</tr>
<tr>
<td>Copper</td>
<td>30</td>
<td>2.0</td>
</tr>
<tr>
<td>Iron</td>
<td>38,000</td>
<td>15.8</td>
</tr>
<tr>
<td>Manganese</td>
<td>600</td>
<td>12.4</td>
</tr>
<tr>
<td>Zinc</td>
<td>50</td>
<td>1.2</td>
</tr>
</tbody>
</table>

The majority of metals are bound in minerals or soil organic matter, not immediately available to plants. *Haby and Sims 1979, **Agvise
Why might we be seeing, or eventually see, more micronutrient deficiencies?

There is a finite amount of micronutrients in the soil. Micronutrient deficiencies will likely increase as:

• Yields and amount removed from field increases
• Few micronutrients are added (individually, in manure)

Deficiencies observed in MT: B, Cl, Cu, Fe, Mn, Zn
MT soils with “low” macro and micro nutrient concentrations in top 6” (source: Agvise, 2017)

There may be bias because more samples may be submitted when deficiency symptoms are suspected than when not

![Graph showing nutrient concentrations](image-url)
Have % of soil chloride or zinc levels below MSU’s ‘critical level’ increased in last 15 years in Montana?

Source: Agvise, unpub. data
Spatial variation of soil test results

Cu levels on a 2-acre sampling grid of a 40-acre field near Rosetown, SK

What would a field composite Cu level be?

In Flaten et al. 2000, map by Bulani Agro, Rosetown, SK
Soil test considerations

- If comfortable with choice, use same lab repeatedly
- Base decision to fertilize micronutrients on multiple sources.
 - Field scout for visual deficiency See *Plant Nutrient Functions and Deficiency and Toxicity Symptoms (NMM 9)*: http://landresources.montana.edu/nm
 - Test plant tissue: few guidelines for tissue test and fert recommendation, and test results vary with plant part and maturity, time of day, handling.
 - Do on-farm strip test trials.
Soil nutrients summary

- Mining soils for nutrients is not sustainable, yet is occurring in Montana.
- Track soil nutrient levels with soil tests, tissue testing, deficiency symptoms
- Have any of you plotted nutrient levels for fields you sample? If so, PLEASE send me your data. Client can remain anonymous.
Questions?

On to soil pH

Apologies for repetition for those who attended CPMS
MT soil samples with pH < 6.5

Soil samples with pH < 6.5

Year

N = 2800 to 15000

AgVise, 2017
Dropping pH changes nutrient availability

- Start watching for unexplained N, P, S, and Mg deficiencies
- Al becomes ‘available’ reaching toxic levels
Dropping pH increases aluminum availability

R. Engel unpub data, 5 locations in north-central MT

pH where yield declines can occur

Extractable Al (ppm)

Soil pH

toxicity 5 ppm

0-3"

3-6"

6-12"

R. Engel unpub data, 5 locations in north-central MT
Is this a real issue or Rick and me looking for more work?

Safflower field near Big Sandy, 2018
pH 4.3 – 4.5 in bare areas

Image courtesy Scott Powell
Prevalence: MT counties with at least one field with pH < 5.5

40% of 20 random locations in Chouteau County have pH < 5.5 in top 2"
Natural reasons for low soil pH

• Soils with low buffering capacity (low soil organic matter, coarse texture, granitic rather than calcareous)

• Historical forest vegetation soils have lower pH than historical grassland

• Regions with high precipitation, leading to leaching of nitrate (and higher yields, therefore generally receiving more N fertilizer)
Agronomic reasons for low soil pH

- Ammonium-based N fertilizer above plant needs due to nitrification:

 ammonium or urea fertilizer + air + H₂O → nitrate (NO₃⁻) + acid (H⁺)

- Leaching loss of nitrate – less nitrate uptake and less root release of basic anions (OH⁻ and HCO₃⁻)

- Crop residue removal – removes Ca, Mg, K (‘base’ cations). 6x the lime to replace base cations removed by oat straw harvest than just oat grain harvest (NE Ext G1503)

- Lack of deep tillage concentrates acidity where N fertilizer applied

- Legumes acidify their rooting zone through N-fixation. Perennial legumes (e.g., alfalfa) more so than annuals (e.g., pea). Yet apparently much less than fertilization of wheat.
Low soil pH in Montana’s historically calcareous soils is generally only in upper 6 inches

5 locations across north central Montana

Rick Engel, unpub data.
14-yr of N fertilization reduced top 4” pH on dryland cropping west of Bozeman. Initial soil pH ~ 7.4

Silt loam, 2% SOM

Engel, Ewing, Miller, Jones unpub data
Some dryland crop rotations reduced top 4” soil pH more than others

Why did pea hay reduce pH?

Silt loam; Engel, Ewing, Miller, unpub data

Highest profit (Miller et al 2015)

Initial pH ~ 7.4
6-yr N fertilization reduced soil pH (0-3”) west of Big Sandy on NT

- Sandy clay loam
- 1.1% SOM
- 100 lb N/acre
- ~0.15 pH units

Why faster rate?

Alternate year was always winter wheat; Jones and Miller unpub data
Acid soils have many additional negative impacts

- Changes persistence and efficacy of herbicides (Raeder et al., 2015)
- Damage to rhizobia (N-fixing by legumes)
- Increase in some fungal diseases (e.g., Cephalosporium stripe)
Questions?

On to “What to do?”
What to do?

• Look for evidence of decreased soil pH, or “unexplained” chemical damage

• Soil test

• Prevent, adapt, restore

Photo by R. Engel
What to look for

- Unexplained poor health in low or mid-slope areas
- **AI** toxicity
 - stubby club roots, no fine branching (similar to nematode damage)

photo sources: Engel

Durum wheat

Field pea

A. Robson,
https://agric.wa.gov.au/n/4487
Above ground symptoms of Al toxicity

- small leaves, short thick internodes
- yellow along margin near tip on older leaves
- purple or brown lesions in chlorotic regions, indentations
- leaf withering and collapse in center
Managing low pH: Prevent

- Optimize N use efficiency – minimize left-over N, leaching loss
- Consider different N and S sources; legumes, calcium ammonium nitrate (27-0-0), manure, gypsum for S source (instead of 21-0-0-24)
- Retain crop residue

If consider the producer’s cost of liming to remediate acidification, and/or lost yield, changing ‘standard’ practices may be economically reasonable.
Managing low pH: Adapt

- Plant Al-tolerant crops or varieties, MT variety trial results are available at http://landresources.montana.edu/soilfertility/acidif/index.html

 McFarland et al., 2015 “Wheat high” are Al and acid tolerant varieties

- Fertilize after vulnerable seedling stage

- Seed deeper?
Seed-placed P_2O_5 a quick acting ‘band-aid’ to increase wheat yield even when (or only when?) P soil test is sufficient

Engel unpub data

Soil pH 4.4, Olsen P = 48 ppm
Seed-placed P_2O_5 or lime increased durum grain yield at pH 4.4 site.

Economics?

- **Lime (5 ton/ac; pH 6.1)**
- **0 Lime (pH 4.4)**

Olsen P = 48 ppm

Note at lower pH site, lime or seed-P increased yield by 22 bu/ac!

Olsen P = 53 ppm

Engel unpub data
Managing low pH: Restore with lime

A lot of lime is required to impact soil pH

Sugar beet lime, tons/acre

Δ Soil pH (Fall 2018 – Fall 2017)

0-4” depth

pH 4.7

pH 6.5

Engel unpub data

A lot of lime is required to impact soil pH

y = 0.495x -0.0329x^2

r^2 = 0.99
Managing low pH: Restore

- Plant acid-tolerant perennial crops

- Legume cover crop?

- Tillage, may complicate liming, unless management changes to eliminate acidifiying causes

Soil pH top 2”

* > 90%, ** > 95%, *** > 99% confidence

Mandan, ND Liebig et al., 2018

Both crops received 60 lb N/ac
Good news

- MT has less acidic soil issues than other regions; catch and prevent now.
- MT’s issue generally in upper 3”, Palouse and SK have low pH at 3-6”. Why important?
- Many MT cropland soils have calcareous parent material
- P and metal micronutrient availability better at low to neutral pH

Soil survey northern Idaho

<table>
<thead>
<tr>
<th>Soil pH</th>
<th>% of fields in each category</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1982-’84</td>
</tr>
<tr>
<td>>6.4</td>
<td>6</td>
</tr>
<tr>
<td>6.0-6.4</td>
<td>11</td>
</tr>
<tr>
<td>5.8-5.9</td>
<td>16</td>
</tr>
<tr>
<td>5.6-5.8</td>
<td>22</td>
</tr>
<tr>
<td>5.4-5.5</td>
<td>18</td>
</tr>
<tr>
<td>5.2-5.3</td>
<td>11</td>
</tr>
<tr>
<td>5.0-5.1</td>
<td>10</td>
</tr>
<tr>
<td><5.0</td>
<td>6</td>
</tr>
</tbody>
</table>

Schroeder, Univ of Idaho, unpub data

• Opportunities for crop advisers
Soil pH summary

- Cropland soils are becoming more acidic, largely due to N fertilization
- Acidification changes nutrient availability and Al toxicity
- Sound nutrient, crop, and residue management can slow or prevent soil acidification
- Management options are available to adapt to or restore acidic soils
- Crop advisers have an opportunity to help their clients minimize economic losses from this growing problem
Thank you!

Additional soil fertility information and this presentation are available at

http://landresources.montana.edu/soilfertility

• For more information on micronutrients, see Nutrient Management Module 7 (NMM 7)
• For plant nutrient functions and deficiency symptoms, see NMM 9

For information on soil acidification see

http://landresources.montana.edu/soilfertility/acidif/index.html

Questions?