"Soil" not "Dirt" on Small Acreages

Gallatin County Extension Bozeman, April 30, 2018 Clain Jones, Extension Soil Fertility Specialist 994-6076, clainj@montana.edu

Agriculture 양 Montana Agricultural Experiment Station

EXTENSION

Why should land owners know something about soils?

- For healthy plants, tasty vegetables, good forage yields, and cover for livestock and wildlife
- To protect the environment
- For efficient use of resources (water, fertilizer, \$)

Today's topics

- Soil properties' effect on
 - Water needs
 - Nutrients
- Understand limitations, to know which properties you can influence
- Management for soil health

Hands-on is the best way to learn, but we'll use clickers because....

- 35% A. I just had my nails done
- 36% B. Clicker training isn't just for dogs
- 29% C. There isn't enough "dirt" on the floor to get a good soil sample

Average Soil Composition

Soil Properties

Organic matter (SOM)

- small in % volume
- controls >90% of function
 pH

Texture

Cation Exchange Capacity (CEC)

What to look for on a soil test report? Factors affecting plant health and production

Factor	Value	Impact/consider	
Nutrient content	Nutrient dependent	Too little = hungry plants, too much = contaminate water, burn plants	
Soil organic matter	≤ 1 (%)	Minimize bare soil, increase N, add legumes	
	> 3 (%)	Little need for extra N on pasture	
Soil pH	< 6	Poor seedling establishment and legume nodulation	
	> 8.3	Nutrients tied up	
Soluble salts (EC)	> 4 (mmhos/cm)	Too saline, water stress, nutrient imbalance	
Soil texture and CEC		Water and nutrient holding capacity	

Mason jar texture test

- Fill a straight sided jar 1/3 with soil
- Add water until almost full
- Add 1 tsp dishwasher soap or water softener
- Shake and let settle
- Mark sand depth at 1 min.
- Mark silt depth after 6 hours (or by color/texture change with clay at 24 hr)
- Calculate clay by difference (or measure at 24 hours)

Using the soil texture triangle

Loam is a combination of all these

Texture Effects on Soil Properties

	Drainage Infiltration	Water holding capacity	Aeration	CEC
Sand	excellent	poor	excellent	low
Silt	good	good	good	medium
Clay	poor	excellent	poor	high

Soils with large surface areas, such as clay and organic matter, have more cation exchange capacity and surface area and therefore are generally more fertile.

Texture effect on soil properties

Water holding capacity would seem a benefit. But, what are problems in clay soils?

- Surface pooling and runoff
- Compaction
- Drowned roots

Questions?

On to pH, Cation Exchange Capacity (CEC) and Soil Organic Matter (SOM)

Soil pH – which is true?

0 of 30

Battery Lemon Wine Normal Distilled Baking Soft Ammonia Lye Acid Juice Rain Water Soda Soap

What are surface horizon pH values in this region?

Many arable soils in our region are high pH because of a calcium layer

pH affects soil nutrient availability

Low pH, acidic soils – may limit N, Ca, Mg, Mo because they don't stick tight and can leach away (Fe) or form minerals (P)

High pH, alkaline calcareous soils – may limit P, Fe, Mn, B, Cu, Zn because they stick tight to the soil, plant can't get them

What is the best option to lower pH in highly calcareous soils?

- 17% A. Add elemental sulfur (S)
- **B.** Add gypsum (CaSO₄)
 - 7% C. Add pine needles
- 17% (D.) No reasonable option to lower significantly and QUICKLY on LARGE scale
- 20% E. Use ammonia based N fertilizers (e.g., urea)
- 17% F. Plant legumes

Adding elemental sulfur

Consequences?

AgVise Laboratories

What might happen if you add 230 lbs S/1000 sq. ft.?

- Soil S levels may become toxic
- Soil salt levels may become toxic
- You spend
 \$366/1000 sq ft

Cation Exchange Capacity CEC – the parking spaces for nutrients in the soil

- CEC is the total neg. charge on a soil
- A high CEC soil (> 15) has the capacity to attract and hold nutrients with positive charges, e.g., K⁺, Zn⁺², NH₄⁺
- Soils with large surface areas, such as clay (58 meq/100g) and SOM (215 meq/100g), have more CEC and therefore are generally more fertile.
- What else might high CEC soils hold onto?
 Herbicides

(+)

Changing SOM

- We can't change CEC of mineral soil or soil pH very well, but can increase SOM to influence soil CEC
- Guesses on how long to increase SOM from 2.0 to 2.2% (meaning by 10%)?

Soil Organic Matter

- SOM can change:
 - relatively rapidly in a garden gardeners love to add organic matter (discussed later)
 - takes a long time on cropland/pasture MSU study, CRP (ungrazed, unharvested alfalfa) increased from 1.4% SOM to 1.48% SOM in 10 years in top foot.
 - If you harvest hay, or graze pasture you are maybe maintaining, most likely losing SOM

Questions?

On to soil nutrients

How do I know what to add to my soil???

Six questions to ask yourself before you add fertilizer

- 1. Which elements do I need? (N, P, K, S, Ca)
- 2. How much do I apply?
- 3. What type of material do I use?
- 4. Which application method is best?
- 5. When is the best time to apply it?
- 6. Will I get a return (\$ or environmental) on my investment?

Soil test

- To identify nutrient deficiency or imbalance
- To help calculate fertilizer rates
- Can increase yield and/or save on fertilizer costs, and decrease environmental risks
- Best done in early spring, but not when soil is wet, therefore in our climate perhaps best done in late fall
- See publications listed at end for details on 'how-to'

How much fertilizer do I need to apply?

- Estimate the amount of fertilizer needed based on soil test results, crop needs and area to receive fertilizer
- Most fertilizer recommendations are in pounds per 1,000 square feet, or pounds per acre
- MSU bulletins MT200702AG, 03AG, and 05AG, and EB0216 and 0217 provide guidelines and example calculations

Gallatin Valley garden soil test report – info provided

Garden soil test report – some items to calculate

To determine N rate you need:

- 1. Crop/yield goal
- Soil sample depth to convert ppm to lb
 N/acre (ppm x 2 x actual depth in inches / 6)

P rate: MSU guidelines are based on Olsen P. Bray works in pH < 7.3, Olsen works pH > 6. Which P test use in this

soil?

Phosphorus Phosphorus Potassium M Weak Bray NaHCO₃-P K ppm ppm ppm 102 77 788

Compost can never be applied in excess

- Compost can create excess N, P and K.
- N can contaminate ground water, P can contaminate surface water and excess P and K can limit uptake of other nutrients

Nutrients removed at harvest vs. nutrients in 1" of manure compost

	Ν	P_2O_5	K ₂ O	
	lbs/1000 sq. ft.			
Removed by annual veg harvest	2.3	0.5	2.7	
Added by 1" manure	40	15	40	

Very easy to add too much

N, P, K added by 4000 lbs $\approx 1''$ material/1000 sq. ft.

	Ν	P_2O_5	K ₂ O	N:P ₂ O ₅	
	lbs/1000 sq. ft.				
Annual veg harvest ¹	2.3	0.5	2.7	5:1	
Manure compost ²	40	15	40	3:1	
Yard compost ³	58	8	12	7:1	
Green pine needles ⁴	57	12	25	5:1	
Dry leaves ⁵	40	9	18	5:1	

1 Univ. Mass, Michigan State, Oregon State, Morris et al., 2007

- 2 MSU
- 3 Maryland Urban compost LeafGro and SmartLeaf
- 4 Pietrzykowski et al., 2018
- 5 Heckman and Kluchinski 1996

500 What happens if Cumulative available (lb/acre) K_2O you supply N with 400 manure? 300 P_2O_5 Rapid excess 200 buildup of P and 100 Ν K if fertilizing to meet N needs 0 0 2 4 6 8 10 12 14 16

- Year
- Of 67 Midwest gardens 92% had excess P and 88% excess K after just 1 to 6 years of 'uninformed' fertilization with composted dairy manure (Hansen unpub data, Ohio State Univ)
- Feed to P and K demands and use legumes or source such as blood meal to supply N

Additional considerations when fertilizing with manure

- Consider the salt content
- Herbicide residual; SOM has huge CEC, CEC holds onto herbicides - know your source!
- Can be full of weed seeds
 & pathogens
- Prevent water contamination from runoff and leaching

Fertilizing grasses in Montana

- Introduced grasses respond better to N fertilizer than native grasses
- N fertilizer does not need to be applied each year; when conditions are good, plants use the available N stored in the soil
- During dry seasons, much of the N remains for the following year
- At least 2-3 years (up to 5-6 years) of positive response to fertilizer N are likely to occur after application
- Fertilizing grasses at 50 lbs N/acre is more economical over time than fertilizing grasses at 100 lbs N/acre

See resources listed at end for more details

Fertilizer application timing

Conventional

- Apply and incorporate (nitrogen) shortly before plants 'take off' in the spring
- Broadcast N fertilizer needs to be incorporated by tillage or ½" water 'event'
- Provide additional N mid-season if needed

Organic material

- Takes time to decompose and become available
- Incorporate in the fall or spread composted in the spring, once ground thaws, but before growth starts
- Do not apply on snow or frozen ground

Questions?

On to healthy soils

What describes a good soil?

- Good aeration, drainage and tilth
- Organic matter and organisms!
- Doesn't crust after planting
- Soaks up heavy rains with little runoff
- Stores moisture for drought periods
- Has few clods and no hardpan
- Resists erosion and nutrient loss
- Produces healthy, high quality vegetables and crops

How can I manage for healthy soils?

- Know your soil's properties and only add amendments as needed
- Avoid compaction by:
 - Reducing tillage and traffic when wet
- Increase the organic matter content by:
 - Adding compost and manure
 - Moderate grazing
- Maintain cover with vegetation or garden residue

Evaluate soil nutrient status in addition to soil test

- Visual assessment of tissue: may identify what has been lacking to this point, once symptoms appear, yield may already be compromised.
 - Flow chart in Nutrient Management Module 9 http://landresources.montana.edu/nm
 - Flowchart and examples posted at <u>http://landresources.montana.edu/soilfert</u> <u>ility/nutrientdeficiencies.html</u>
- Tissue concentrations, not an exact science either

What is/was deficient here?

- 57% A. Ability to spell
- 23% B. Time to read the bag label
- 20% C. Shouldn't have let the fairies handle the spreader

ID of 'problem' is not always clear cut

Evaluate and adjust

- Indicators of soil nutrients: yield, quality (taste, appearance, forage nitrate), nutrient deficiencies or toxicities
- Use this year's observations to fine tune rates next year
- What else might be unique to your operation to consider that isn't on a soil test? Depth to water table, other?
- What other tools?

- Understanding soil properties guides proper fertilization
- Soil testing is an important tool to calculate fertilizer rates, maximize plant heath, protect environment
- The right source, rate and timing leads to optimal fertilizer use and plant health.
- Observe and adjust to your specific conditions

Resources

On soil fertility website under *Extension Publications* <u>http://landresources.montana.edu/soilfertility/</u>

- Soil Nutrient Management for Forages: N (EB0217)
- Soil Nutrient Management for Forages: PKSMicros (EB0216)
- Home Garden Soil Testing & Fertilizer Guidelines (MT200705AG)
- *Soil Sampling Strategies* (MT200803AG)
- Interpretation of Soil Test Reports for Agriculture (MT200702AG)
- Developing Fertilizer Recommendations for Agriculture (MT200703AG)
- Soil Sampling and Laboratory Selection (4449-1) <u>http://landresources.montana.edu/NM/</u>
- The Soil Scoop

http://landresources.montana.edu/soilfertility/soilscoop.html

At online MSU Extension catalog <u>http://www.msuextension.org/category.cfm?Cid=1</u>

- Using Manure as Fertilizer (EB0184)
- Home Composting (MT199203AG)
- Manure Composting (MT201206AG)
- Dryland Pastures in MT and WY (EB0019)

QUESTIONS?

