Soil Testing and Soil Health: Forage Focus

Sanders County Soils Workshop March 21, 2018

Clain Jones, Soil Fertility Specialist clainj@montana.edu 994-6076

Image by Ann Ronning

College of AGRICULTURE MONTANA AGRICULTURAL EXPERIMENT STATION

EXTENSION

Why should land owners know something about soils?

- For healthy plants, tasty vegetables, good forage yields, and cover for livestock and wildlife
- To protect the environment
- For efficient use of resources (water, fertilizer, \$)

Today's topics

- Explain soil health vs quality
- Present what can be learned from a soil test
 - Soil nutrients
 - Soil properties
- Explain limitations, to know which properties you can influence
- Provide fertilizer guidelines and example calculation for forage
- Compare fertilizer sources
- Consider options other than soil tests to guide soil nutrient management

Hands-on is the best way to learn, but we'll use clickers because....

- 1. I just had my nails done
- Clicker training isn't just for dogs
- There isn't enough "dirt" on the floor to get a good soil sample

33% 33%

33%

What describes a good soil?

- Good aeration, drainage and tilth
- Organic matter and organisms!
- Doesn't crust after planting
- Soaks up heavy rains with little runoff
- Stores moisture for drought periods
- Has few clods and no hardpan
- Resists erosion and nutrient loss
- Produces healthy, high quality vegetables and crops

Soil Quality vs Soil Health

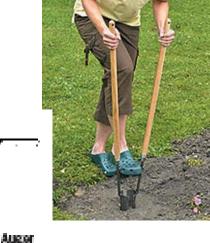
<u>Soil Quality</u> = properties that change little, if at all, with land use management practices

- Texture
- pH
- Cation Exchange Capacity

Which is measured with conventional soil tests?

Soil Health = dynamic properties which may be subjective to measure, but can be changed

- Aggregation
- Microbial activity
- Tilth
- Nutrient availability
- Water holding capacity
- Compaction


SOM often is included in both lists

Soil test

- To identify nutrient deficiency or imbalance
- To help calculate fertilizer rates
- Can increase yield and/or save on fertilizer costs, and decrease environmental risks
- Best done in early spring, but not when soil is wet, therefore in our climate perhaps best done in late fall
- See publications listed at end for details on 'how-to'

Soli Probe

What to look for on a soil test report? Factors affecting plant health and production

Factor	Value	Impact/consider
Nutrient content	Nutrient dependent	Too little = hungry plants, too much = contaminate water, burn plants
Soil organic	≤ 1 (%)	Minimize bare soil, increase N, add legumes
matter	> 3 (%)	Little need for extra N on pasture
	< 5	Poor seedling establishment
Soil pH	< 6	Poor legume nodulation
	> 8.3	Nutrients tied up
Soluble salts (EC)	> 4 (mmhos/cm)	Too saline, water stress, nutrient imbalance
Soil texture and	CEC	Water and nutrient holding capacity

Soil test report for 2 fields near Hot Springs, Sanders Co.

	SOIL FERTILITY RECOMMENDATIONS (POUNDS PER ACRE)																	
YOUR	INTENDED	YIELD	PREVIOUS		SOIL AM				N	P205	K,O	Mg	S	Zn	Mn	Fe	Cu	В
SAMPLE NUMBER (LAB NUMBER)	CROP	GOAL	CROP	LIME LBS/A OF	LIME TON	GYPSUM TONS/A		LEMENTAL SULFUR LBS/A	NETROGEN	PHOSPHATE	POTASH	MAGNE- SIUM	SLRR	200C	MANGA- NESE	IRON	COPPER	BORON
DON (31396506)	ALF/GRASS - ton	5.0	WHEAT WINTER			0.3	OR	50	55	130	175	-						
SCH 2C (31395507)	ALF/GRASS - ton	5.0	GRASS HAY - ton						60	135	205	1						

		SO	L FERTILI
YOUR SAMPLE NUMBER (LAB NUMBER)	INTENDED CROP	YIELD GOAL	PREVIOUS
DON (31396506)	ALF/GRASS - ton	5.0	WHEAT WINTER
SCH 2C (31396507)	ALF/GRASS - ton	5.0	GRASS HAY - ton

Important info:

- Intended crop
- Yield goal
- Prior crop

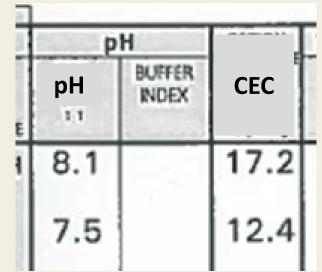
Soil test report for 2 fields near Hot Springs, Sanders Co.

LAB				N	TRATE-N						SULF	JR	ZIN		MANGA Mn	ALC: NOT THE OWNER OF THE OWNER OWNER OF THE OWNER	IRÓ Fe	the second s	COPP		BORO	ON	LIME	SOLUE	the second se	
NUMBER		SURFACE		_	SUBSOIL 1			SUBSOIL 2	and the second second	Total	ICAN		DIN		DTIA		DT		DIPA		SORIL D	ATTA	IMAILE	1.1	1	
313	ppm	lbs/A	depth (n)	ppm	Ibs/A	depth (h)	ppm	Ibs/A	depth (in)	ibs/A	ppm	BATE	ppm	RATE	ppm	RATE	ppm	RATE	ppm	RATE	ppm	RATE		cm/cm	RATE	
96506	8	19	0-8							19														1		
96507	5	12	0-8	, ų						12											- 1					

LAB	(c)		and the second	N	TRATE-N	I (FIA)			den al l	
NUMBER		SURFACE	depth		SUBSOIL	1		Total		
313	ppm	lb/ac	(in)	ppm	Ros/A	depth (h)	ppm	lbs/A	depth (in)	lb/ac
96506	8	19	0-8							19
96507	5	12	0-8							12

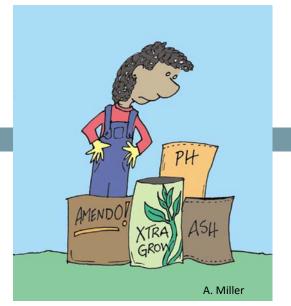
To determine N rate you need:

- 1. Yield goal
- Soil sample depth to convert ppm to lb N/acre (ppm x 2 x actual depth in inches / 6)


Soil test report for 2 fields near Hot Springs, Sanders Co.

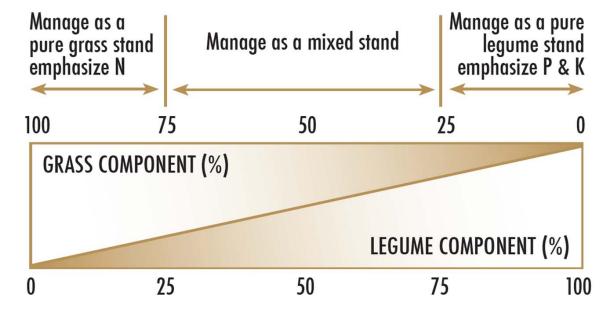
		_				-	AL AMMONIUM A	ETATE (EXCHANS	ARLES				_			_	
LAB	SAMPLE	ORGANIC	P	HOSPHORU	15	POTASSIUM	MAGNESIUM	CALCIUM	SODIUM	Р	Н	CATION	PERCEN	T BASE S	ATURATIO	N (COM	PUTED)
NUMBER *313*	IDENTIFICATION	MATTER LD.L percent RAT		P ISTRONG BRAY) L:7 ppm RATE	OLSEN BICARBIONA P IPPIN RA	E K pprn RATE	Mg nom RATE	Ca ppm RATE	Na pom RATE	SOIL pH 11	BUFFER	CAPACITY CAPACITY CEC meg/300g	% K	96 Mg	% Ca	% H	% Na
96506	DON	3.7 н	6 VL	22 м	7 L	139 м	365 VH	2629 н	151 vн	8.1		17.2	2.1	17.7	76.4	0.0	3.8
96507	SCH 2C	1.9 L	4 VL	31 м	5 vi	110 м	243 VH	2009 н		7.5		12.4	2.3	16.3	81.4	0.0	

ORGANIC	PHOSPHORUS								
LD.L	Weak Bray	Strong Bray	Olsen E						
percent RATE	ppm rate	ppm rate	ppm rate						
3.7 н	6 VL	22 M	7 L						
1.9 L	4 vL	31 м	5 vl						


Supervised in the local division of the	LEUTR	4
POTASSI	UM	N
К		
ppm ra	te	
139	М	
110	M	

- P: MSU guidelines are based on Olsen P. Bray works in pH < 7.3, Olsen works pH > 6.
- SOM: soil organic matter
- K
- pH and CEC

How do I know what to add to my soil???


Six questions to ask yourself before you add fertilizer

- 1. Which elements do I need? (N, P, K, S, Ca)
- 2. How much do I apply?
- 3. What type of material do I use?
- 4. Which application method is best?
- 5. When is the best time to apply it?
- 6. Will I get a return (\$ or environmental) on my investment?

How much fertilizer do I need to apply?

- Estimate the amount of fertilizer needed based on soil test results and desired production
- Focus of N vs P & K fertilization in forages depends on % legume in stand.
- MSU bulletins provide rate guidelines and MT200703AG gives example calculations

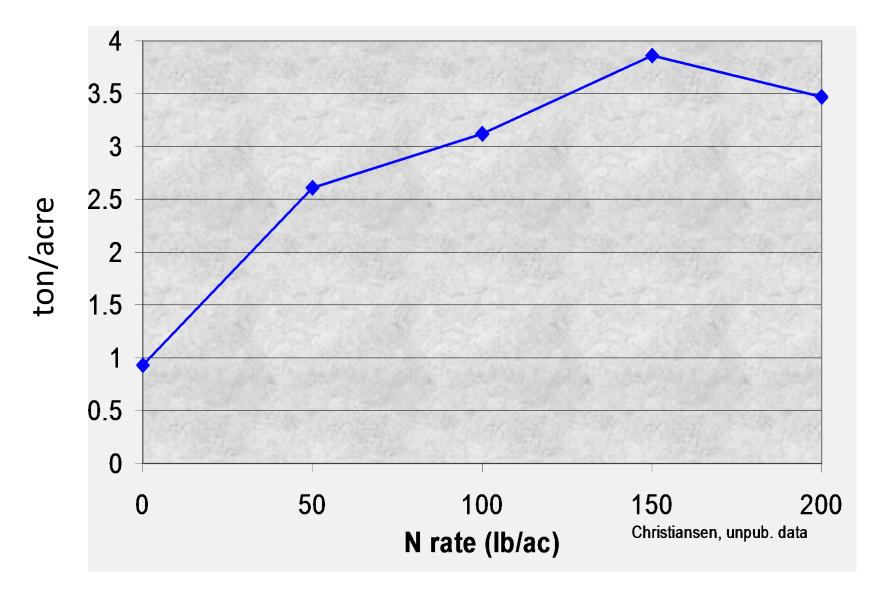
Fertilizing with nutrients other than N favors legumes over grass

Your turn

	OM %	NitrateN Ib/ac		K ppm	рН
Test	1.8	15	13	200	7.5

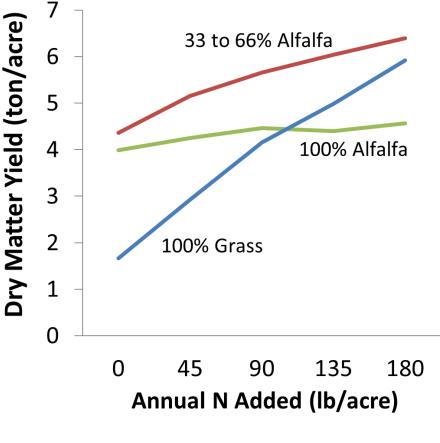
Using this data and tables from the 2 forage soil scoops, how much N, P, and K are required to grow 3 ton/acre of grass?

N, P, and K rates?


	OM %	NitrateN Ib/ac	P ppm	K ppm	рН
Test	1.8	15	13	200	7.5

Nutrient	Forage (lb/acre)
Ν	60*
P_2O_5	~20
K ₂ O	30

*Need to subtract out soil nitrate-N from available N need


Diminishing return of increasing N

Applies to all crops, example on irrigated western wheatgrass, Blaine Co.

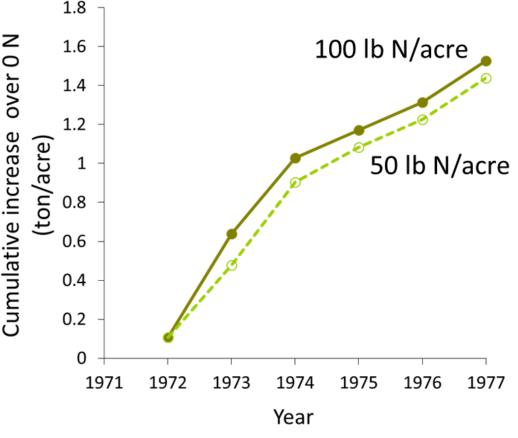
Challenges to high N use efficiency in perennial systems, and N options

- Urea needs 0.5" water or tillage to incorporate N
- Plant residue
 - intercepts fertilizer
 - increases volatilization
 - can tie up N
- Surface band liquid N
- Polymer coated N works for extended forage season or late cutting
- Legume in pasture mix or legume cover crop in market gardens may be best N source

Malhi et al. 2002, Eckville, Alberta 17.5" avg annual and 10.5" May-Aug precip

Sulfur tissue tests and visual symptoms are better than soil tests

- Standard sulfate soil test too unreliable
- Better to use
 - visual symptoms (yellow or light green upper leaves)
 - tissue tests critical values provided by lab or our documents
 - Last year production performance



Wheat, image from IPNI

Forage fertilization strategy

- If a field containing < 75% legumes will be rotated to a different crop soon, consider N for immediate gain
- If goal is low input, long-term sustainable production rather than prime quality hay, adequate P and K are key and cheaper than re- or interseeding
 If goal is low input, long-term sustainable production rather sustainable production rather 1.8
 Interseeding
 - If you need to buy hay or rent pasture, consider fertilizing for long term benefit
 - A single 50 lb N/acre on dryland grass was more economical over 5-yrs than a single 100 lb N/acre

Lorbeer et al. 1994, Jacobsen et al.1996, Havre

P and K fertilization strategy

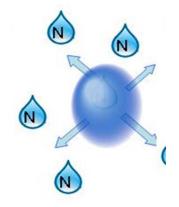
Is a single 100-400 lb P_2O_5/ac on dryland alfalfa as good as the same amount divided over 5 annual applications?

50% A. Yes50% B. No

Response Counter

A large application produced similar yield, protein and profit as 5 small annual applications (central Alberta, Malhi et al. 2001).

Immobile nutrients can be banked – know soil test levels and if low, build up P and K when prices low


Questions?

On to conventional vs organic matter

Conventional/chemical fertilizers

- No carbon
- Easy to store
- Higher nutrient concentration
- Custom formulated
- Easy to use but calibrate your equipment
- Liquid and solid
- Coated specialty products reduce leaching, volatilization, runoff losses.

Organic Fertilizers

- Bulkier
- Nutrient content low
- Nutrient content difficult to quantify
- Supply organic matter and other soil quality benefits

	General % of dry weight									
Туре	Ν	P_2O_5	K ₂ O							
Manure compost	0.3 - 0.5	0.1 - 0.5	0.2 – 0.6							
Garden waste	1 – 1.5	0.2 – 0.5	0.5 – 1.5							

Approximately how much total N, P, and K does 1" of manure compost supply?

		Ν	P ₂ O ₅	K ₂ O	
		H			
	Removed annually ^{1.}	3.4	0.3	3.2	
1.	Added by 1" manure	40	15	40	50%
2.	Added by 1" manure	6	1	6	50%

To add 5 lb N/1000 sq. ft. takes approx. 500 lb manure compost or 11 ton/acre

^{1.} Morris, Ping, and Durgy. University of Connecticut.

http://www.newenglandvfc.org/pdf_proceedings/SoilOrganicAmend.pdf

Response Counter

Application considerations

Conventional

 Do not apply on snow, before heavy rains or snowmelt

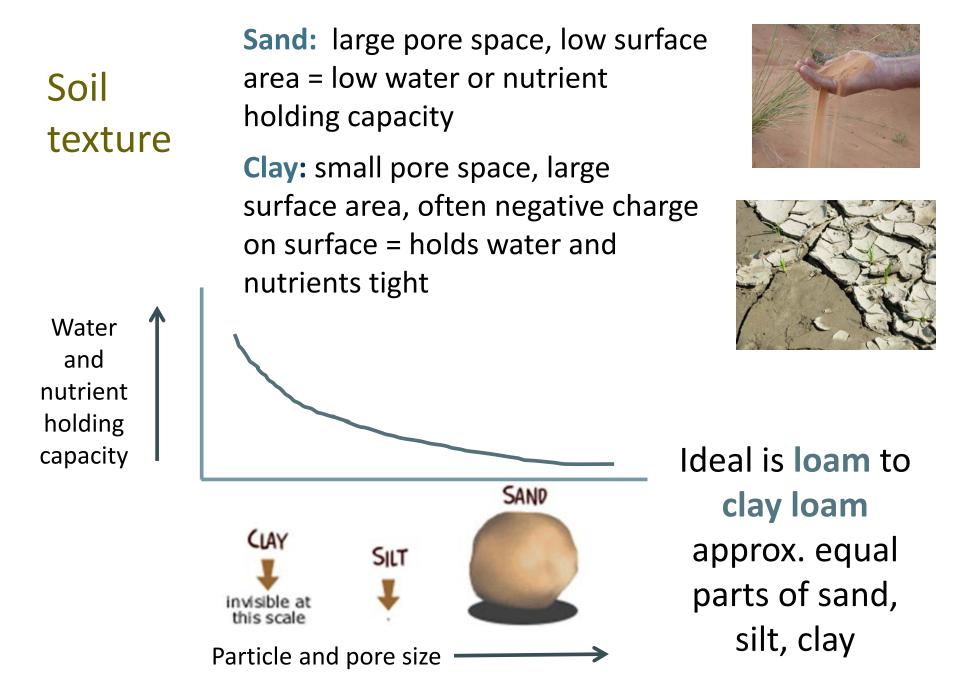
- Apply and incorporate (nitrogen) shortly before plants 'take off' in the spring
- Broadcast N fertilizer needs to be incorporated by tillage or ½" water 'event'
- Provide additional N mid-season if needed

Specialty slow release

 Incorporate and apply early in growing season or use blend of quickly available source and slow release

Application considerations: organic material

- Incorporate in the fall or spread composted in the spring, once ground thaws, but before growth starts
- Do not apply on snow or frozen ground
- N can be 'tied up' due to high C
- Manure:
 - Creates rapid buildup of P and K if fertilizing to meet N needs. Feed to P and K demands and use legumes to supply N
 - Consider the salt, weed seed and pathogen content
 - Herbicide residual; SOM has huge CEC, CEC holds onto herbicides - know your source!

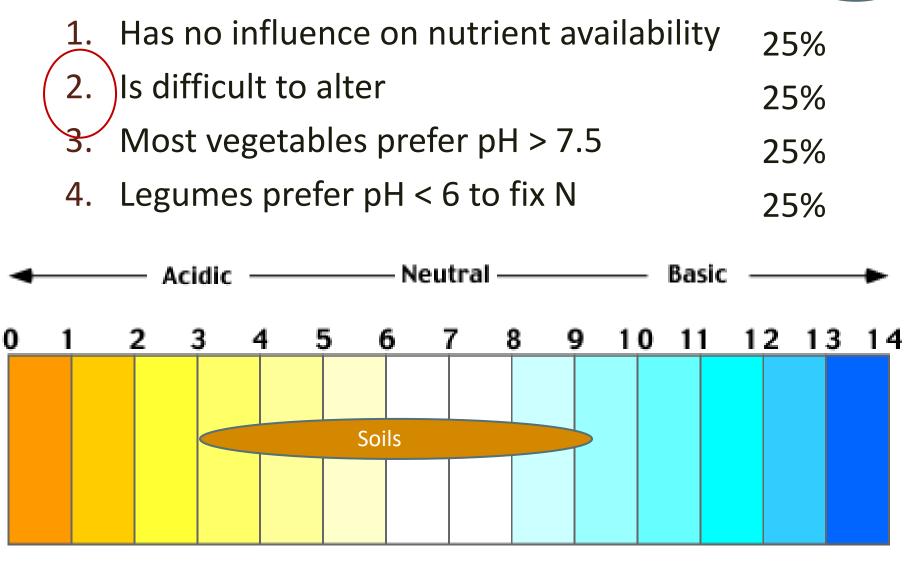

Questions?

On to other factors that influence soil nutrient management

What else from a soil test?

Published rates are developed for entire state and sometimes based on neighbor state's trials. They are likely not accurate for a particular field. Which soil property does **NOT** influence *nutrient* availability?

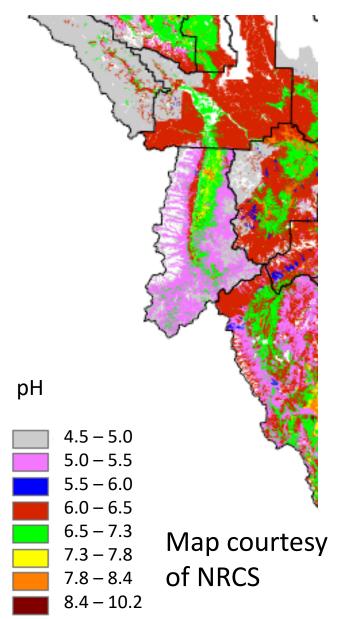
- 22% A. Texture/surface area
- 21% B. pH
- 16% C. CEC (cation exchange capacity = the parking spaces in soil for nutrients)
- 18% D. SOM (soil organic matter)24% E. Color



Texture Effects on Soil Properties

	Drainage	Water holding capacity	Aeration	CEC
Sand	excellent	poor	excellent	low
Silt	good	good	good	medium
Clay	poor	excellent	poor	high

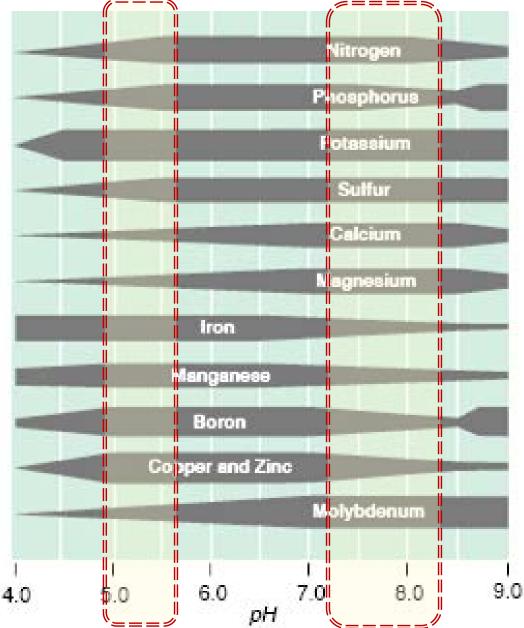
Soils with large surface areas, such as clay and organic matter, have more cation exchange capacity and surface area and therefore are generally more fertile.


Soil pH – which is true?

Battery Lemon Wine Normal Distilled Baking Soft Ammonia Lye Acid Juice Rain Water Soda Soap

Respon se Counter

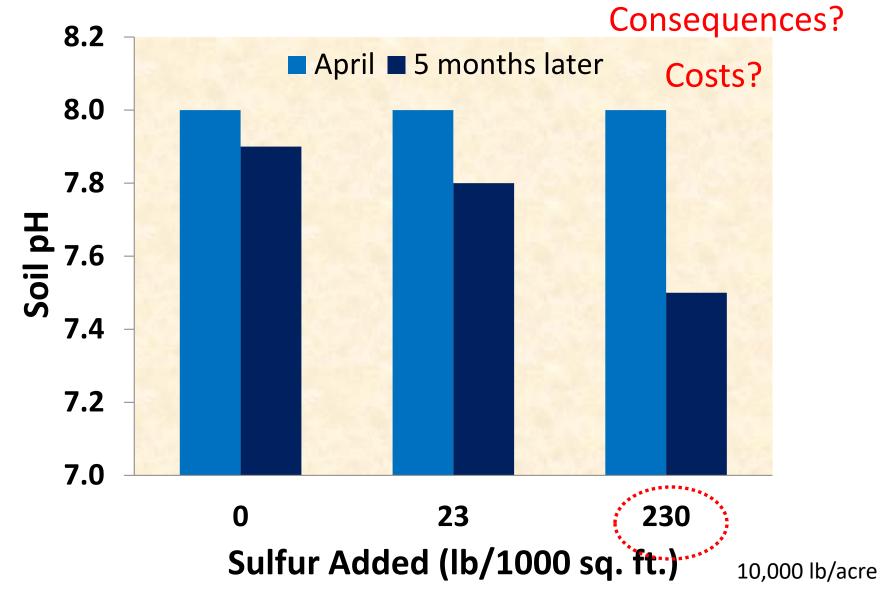
What are surface horizon pH values in this region?


There are known areas in western Montana with top 6" pH < 5.5 Ex: Near Hamilton and Plains, Other areas have pH levels near 8.0.

pH affects soil nutrient availability

Low pH, acidic soils – may limit N, Ca, Mg, Mo because they don't stick tight and can leach away (Fe) or form minerals (P)

High pH, alkaline calcareous soils – may limit P, Fe, Mn, B, Cu, Zn because they stick tight to the soil, plant can't get them



What is the best option to lower pH in highly calcareous soils?

- 17% A. Add elemental sulfur (S)
- 17% B. Add gypsum (CaSO₄)
- 17% C. Add pine needles
- 17% (D.) No reasonable option to lower significantly and QUICKLY on LARGE scale
- 17% E. Use ammonia based N fertilizers (e.g., urea)
- 17% F. Plant legumes

Adding elemental sulfur

AgVise Laboratories

What might happen if you add 230 lbs S/1000 sq. ft.?

- A. You spend \$366/1000 sq ft 25%
 B. Your soil pH will drop by at 25% least 1.5 units
 - C. Soil S levels will remain well 25% below toxic
 - D. Soil salt levels will improve 25%

Same study site – added 115 lbs gypsum /1000 sq. ft. with no change in soil pH

Acid soils have many negative impacts

- Herbicide persistence (Raeder et al., 2015)
- Damaging to rhizobia (N-fixing by legumes)
- Increase in fungal diseases
- Increase Al and Mn to toxic levels

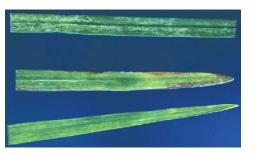
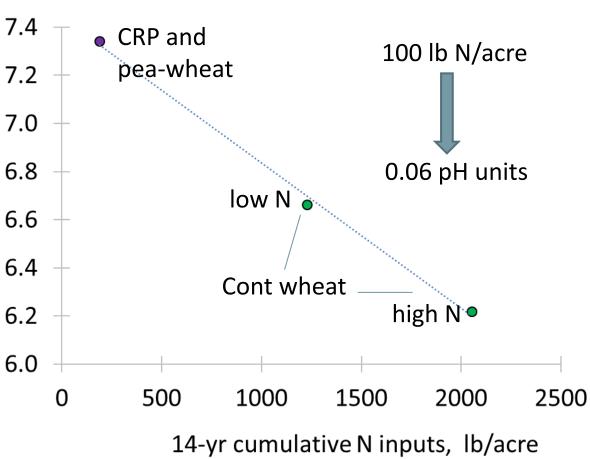


Image from CIMMYT, Int.


Images from Creative Commons

Factors that contribute to acidification

- Coarse soils
- Higher precipitation
- No-till (less subsoil mixing)
- Excess N fertilization

- Low organic matter
- Stubble or hay removal

Engel, Ewing, Miller unpub data

Select plants suitable to your soil's pH

Crop	Preferred pH
Sweet pea	7 - 8
Blueberry	4.5 - 6.0
Raspberry	5.0 - 7.5
Burr clover	> 7
Alfalfa	> 5.7
Blue grama grass	> 7
White clover	< 7

You grow blueberries, the Gallatin Valley grows sweet peas!

Select species suitable for pH and soil type, see: *Dryland Pastures in MT and WY*

Questions?

On to cation exchange capacity CEC and soil organic matter SOM

SOM = Soil organic matter

What does SOM **NOT** do for soil?

Response Counter

- 17% A. Increase cation exchange capacity
- 17% B. Provide nutrients as it decomposes

17%

17%

17%

- 17% C. Hold water which helps nutrients move from soil to plant roots
 - Consistently reduce soil pH
 - . Reduce soil compaction
 - F. Increase water infiltration

High surface area and CEC (215 meq/100 g for SOM vs. 58 for clay)

Changing SOM

- We can't change CEC of mineral soil or soil pH very well, but can increase SOM to influence soil CEC
- Guesses on how long to increase SOM from 1.4 to 1.5%
- SOM can change:
 - takes a long time on cropland/pasture MSU study, CRP (ungrazed, unharvested alfalfa) increased from 1.4% SOM to 1.48% SOM in 10 years in top foot.
 - If you harvest hay, or graze pasture you are maybe maintaining, most likely losing SOM

What is/was deficient here?

- 33% A. Ability to spell
- 33% B. Time to read the bag label
- 33% C. Shouldn't have handed the dog the spreader

ID of 'problem' is not always clear cut

Evaluate soil nutrient status in addition to soil test

- Visual assessment of tissue: may identify what has been lacking to this point, once symptoms appear, yield may already be compromised. Examples posted at http://landresources.montana.edu/soilfert ility/nutrientdeficiencies.html
- Tissue concentrations, not an exact science either

How can I manage for healthy soils?

- Know your soil's properties and only add amendments as needed
- The right source, rate and timing leads to optimal fertilizer use and plant health
- Observe and adjust to your specific conditions
- Avoid compaction by:
 - Reducing traffic and tillage when wet
- Increase the organic matter content by:
 - Moderate grazing
 - Adding manure
- Maintain soil cover with vegetation

Resources

On soil fertility website under *Extension Publications* <u>http://landresources.montana.edu/soilfertility/</u>

- Soil Nutrient Management for Forages: N (EB0217)
- Soil Nutrient Management for Forages: PKSMicros (EB0216)
- Soil Sampling Strategies (MT200803AG)
- Interpretation of Soil Test Reports for Agriculture (MT200702AG)
- Developing Fertilizer Recommendations for Agriculture (MT200703AG)
- Soil Sampling and Laboratory Selection (4449-1) http://landresources.montana.edu/NM/
- The Soil Scoop

http://landresources.montana.edu/soilfertility/soilscoop.html

Questions?

Photo by Ann Ronning

18