Soil Nutrient Management: Testing, Sources, and Foliar Application
Soils Workshops for Hill, Blaine and Phillips Counties
Feb. 27 and 28, 2014

by Clain Jones, Extension Soil Fertility Specialist
clainj@montana.edu; 994-6076
Objectives

• Discuss value of soil and tissue sampling
• Interpret soil test results
• Determine fertilizer recommendations
• Present nutrient source options, including foliar applications
• Discuss effects of timing for different sources
• Present results of different sources on grain yield and protein
But first, some questions to help us assess impact of Rick Engel’s and my work on urea volatilization
What percentage of urea would you estimate is lost to the air from volatilization if urea is broadcast (no-till) between mid-fall and early spring and not incorporated into the soil, ON AVERAGE?

1. 0 to 10%
2. 10 to 20%
3. 20 to 30%
4. 30 to 40%
5. > 40%
6. I didn’t come prepared to take a quiz

Based on 20+ studies: ~18%
What do you think are worst case conditions for urea volatilization?

1. Warm and moist soil surface with only sprinkles for 2 weeks
2. Cold and moist soil surface with only sprinkles for 2 weeks
3. Warm and dry soil surface followed quickly by > 0.5 inches of rain or irrigation
4. Cold and dry soil surface followed quickly by > 0.5 inches of rain or irrigation
5. I don’t know

1 is correct based on ours and others research
Have you made any management changes based on MSU’s urea volatilization research? If ‘yes’, what was your biggest change?

1. No
2. Yes. I now try to apply urea immediately before rain or irrigation.
3. Yes. I now subsurface band or incorporate more of my urea.
4. Yes. I now try to apply only to dry soil surfaces.
5. Yes. Other

Thank you!
Fertilizer guidelines

• Guidelines for N, P, K and 5 micro-nutrients for winter wheat and spring wheat production are provided in *Fertilizer Guidelines for Montana Crops* (EB0161).

• They are based on soil analysis. *Soil Sampling and Laboratory Selection* (MT4449-1) *Soil Sampling Strategies* (MT200803AG). There is not a good soil test for S.
Advantages of soil testing (even if only occasionally)

• To identify nutrient deficiency or imbalance
• To help calculate optimal fertilizer rates
• Especially important in case where soil nutrient availability has been depleted or is in excess
• Can increase yield and/or save on fertilizer costs, and decrease environmental risks
Timing of soil sampling

- Nitrogen fertilizer guidelines are based on spring soil samples for nitrate in Montana
- BUT, most sampling in MT occurs from late summer to late fall

Based on 35 ‘clicker’ responses at MABA 2010 Convention, when asked when crop advisers do most of their soil sampling:

Why is this a potential problem?
November to April nitrate changes, Montana data based on 180 samples (Jones et al. 2011)

April - Previous November Nitrate Change (lb N/ac)

- Nitrate decreased overwinter
- Nitrate increased overwinter

Percentage of soil samples

- < -60: 4
- -60 to -40: 2
- -40 to -20: 8
- -20 to 0: 21
- 0 to 20: 39
- 20 to 40: 19
- 40 to 60: 4
- 60 to 80: 1
- 80 to 100: 1
Soil sampling timing summary

• Changes in nitrate levels change from late summer/fall to spring can be large and highly variable
• High nitrate levels on shallow coarse soils can be lost overwinter, resulting in under-fertilization
• Nitrate levels can increase overwinter, resulting in over-fertilization
• Sampling later will better represent growing season nitrate levels
Soil test indicates probability of response
Figure 3. Sample Soil Test Report and Fertilizer Recommendations

Name: Producer	Sample Date: April 1, 2007
Lab Number: 12345	Your Sample Number: 1
Crop to be Grown: Spring Wheat	Previous Crop: Fallow
Sampling Depth: 0 to 24 inches	Yield Goal: 50 bu/acre

<table>
<thead>
<tr>
<th>Soil Test Results</th>
<th>Interpretation</th>
<th>Recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitrate-N</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-6 in 37 lb/acre</td>
<td>Medium</td>
<td>90 lb N/acre</td>
</tr>
<tr>
<td>6-24 in 36 lb/acre</td>
<td>Medium</td>
<td></td>
</tr>
<tr>
<td>0-24 in 73 lb/acre</td>
<td>Medium</td>
<td></td>
</tr>
<tr>
<td>Olsen Phosphorus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-6 in 15 ppm</td>
<td>Medium</td>
<td>20 lb P₂O₅/acre</td>
</tr>
<tr>
<td>Potassium</td>
<td>Medium</td>
<td>40 lb K₂O/acre</td>
</tr>
<tr>
<td>0-6 in 192 ppm</td>
<td>Medium</td>
<td></td>
</tr>
<tr>
<td>0-6 in 6 lb/acre</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sulfate-S</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>6-24 in 54 lb/acre</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-24 in 60 lb/acre</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boron</td>
<td>Medium</td>
<td>1 lb B/acre</td>
</tr>
<tr>
<td>0-6 in 0.5 ppm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Copper</td>
<td>Very High</td>
<td></td>
</tr>
<tr>
<td>0-6 in 1.7 ppm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Iron</td>
<td>Very High</td>
<td></td>
</tr>
<tr>
<td>0-6 in 47 ppm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Manganese</td>
<td>Very High</td>
<td></td>
</tr>
<tr>
<td>0-6 in 10 ppm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zinc</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>0-6 in 1.3 ppm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Soluble Salts</td>
<td>Low</td>
<td></td>
</tr>
<tr>
<td>0-6 in 0.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Organic Matter</td>
<td>Medium</td>
<td></td>
</tr>
<tr>
<td>0-6 in 3.4%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Soil pH</td>
<td>Medium/High</td>
<td></td>
</tr>
<tr>
<td>0-6 in 7.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CEC</td>
<td>Medium</td>
<td></td>
</tr>
<tr>
<td>0-6 in 17.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Soil Texture</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-6 in Sandy Loam</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
What are the first things to look for on a soil test report?

Factors affecting crop production

<table>
<thead>
<tr>
<th>Factor</th>
<th>Value</th>
<th>Impact/consider</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soil organic matter</td>
<td>≤ 1 (%)</td>
<td>Minimize fallow, add a perennial, increase N</td>
</tr>
<tr>
<td></td>
<td>> 3 (%)</td>
<td>N credit (~15 lb N/ac)</td>
</tr>
<tr>
<td>Soil pH</td>
<td>< 6</td>
<td>Poor legume nodulation</td>
</tr>
<tr>
<td></td>
<td>> 8.3</td>
<td>Sodic soil, nutrients tied up</td>
</tr>
<tr>
<td>Soluble salts (EC)</td>
<td>> 4 (mmhos/cm)</td>
<td>Too saline, water stress, nutrient imbalance</td>
</tr>
</tbody>
</table>
Limiting soil nutrient levels

<table>
<thead>
<tr>
<th>Nutrient</th>
<th>Limiting level in top 6 inches (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>Crop and yield goal dependent</td>
</tr>
<tr>
<td>P</td>
<td>16</td>
</tr>
<tr>
<td>K</td>
<td>250</td>
</tr>
<tr>
<td>S</td>
<td>Not available</td>
</tr>
<tr>
<td>B</td>
<td>1.0</td>
</tr>
<tr>
<td>Cl</td>
<td>30 lb/ac in top 2 feet</td>
</tr>
<tr>
<td>Cu</td>
<td>0.5</td>
</tr>
<tr>
<td>Fe</td>
<td>5.0</td>
</tr>
<tr>
<td>Mn</td>
<td>1.0</td>
</tr>
<tr>
<td>Zn</td>
<td>0.5</td>
</tr>
</tbody>
</table>

Table 1. *Interpretation of Soil Test Reports for Agriculture* (MT200702AG)
Optimize fertilizer N rate based on economics

How?

- Use a conservative pre-plant N rate based on:
 - spring soil sample
 - realistic yield potential
 - economic rate calculator

http://landresources.montana.edu/soilfertility/small%20grains%20economic%20calculator.html

- Apply a 2nd application if needed – based on adjusted yield potential, consider using in-season sensor-based technology
Economic Analysis of Fertilizer Application Rates for Winter Wheat in Montana.

Steps to Use Program

Introduction
Step 1 - Yields
Step 2 - Protein
Step 3 - Net Revenue
Step 4 - Revenue vs Yield

Funding for the development of this program was provided by the Montana Fertilizer Advisory Committee.

Authors:
Clain Jones
Montana State University Extension
406-994-6076
clainj@montana.edu

Duane Griffith
Montana State University Extension
406-994-2580
giffith@montana.edu

The F11 key will toggle (switch on and off) the screen space from normal to maximum viewable area.
P fertilizer guidelines

Table 18. P fertilizer guidelines based on soil analysis (EB0161)

<table>
<thead>
<tr>
<th>crop</th>
<th>Olsen P soil test level (ppm)</th>
<th>P fertilizer rate (lbs P_2O_5 /acre)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>Spring wheat</td>
<td></td>
<td>50</td>
</tr>
<tr>
<td>Winter wheat</td>
<td></td>
<td>55</td>
</tr>
</tbody>
</table>

*With P>16 ppm consider using crop removal rates as P fertilization guideline

Example

Winter wheat, Olsen P = 10 ppm

P_2O_5 needed = **42.5 lb/ac**
Questions on soil sampling, test interpretation and rate calculations?

For more information:

Interpretation of Soil Test Reports for Agriculture (MT200702AG)

Developing Fertilizer Recommendations for Agriculture (MT200703AG)
Tissue testing

- Vegetation index sensors (NDVI) have potential for adjusting N by early tillering in SW for yield (Walsh unpub. data)

- Tissue sampling:
 - Crop dependent sufficiency ranges
 - Correct time and tissue sampled
 - Correct handling of sample
 - Sufficiency ranges and fertilization recommendations not well established in MT, best to compare with healthy plants from same area

- Soil test better for P and K
Tissue testing for S and micronutrients

- Tissue sampling for S is useful if deficiency is suspected. N:S ratio is important, but can be misleading if both N and S are lacking.
- See *Secondary Macronutrients: cycling, testing and fertilizer recommendations* (MT4449-6) for sufficiency ranges
- There are tissue concentration sufficiency ranges, but other than for Cl there are no MT fertilizer guidelines for micronutrients based on tissue tests
Small grain tissue nutrient concentrations from Montana in 2013 (source: AgVise Labs, n=589)

There may be error b/c many samples are not the correct plant part and there may be bias because more samples with deficiency symptoms are submitted than w/o symptoms

Take home: of the macros, P is deficient most often; of the micros, Cl and Zn appear to be deficient most often, based on tissue testing
How know if Cl is deficient in your wheat?

Based on plant Cl level at boot stage:

- Cl < 0.12 ppm: large chance for a response
- 0.12 < Cl < 0.4 ppm: some chance for a response
- See *Winter Wheat Response to Chloride Fertilizers* (Fertilizer Fact #3) for more details.
Questions on tissue testing?
Source affects timing – N must be available to benefit yield and protein.

More info in Nutrient Uptake Timing (EB0191)
Nutrient sources

• Enhanced efficiency fertilizers generally designed to increase availability and reduce losses to environment

• Foliar fertilizers used for in-season adjustments
Different N Sources have different loss potential

<table>
<thead>
<tr>
<th>Source</th>
<th>Volatilization</th>
<th>Leaching</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conventional</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ammonium nitrate, CAN, ammonium sulfate</td>
<td>less</td>
<td>≈</td>
</tr>
<tr>
<td>UAN (solution 28 or 32)</td>
<td>less</td>
<td>≈</td>
</tr>
<tr>
<td>Enhanced Efficiency Fertilizers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Urease inhibitors (NBPT=Agrotain)</td>
<td>less</td>
<td>≈</td>
</tr>
<tr>
<td>Nitrification inhibitors (DCD, N-Source, N-Serve, Instinct)</td>
<td>≈</td>
<td>less</td>
</tr>
<tr>
<td>Combinations (SuperU)</td>
<td>less</td>
<td>less</td>
</tr>
<tr>
<td>Controlled release polymer coated (ESN)</td>
<td>less</td>
<td>less</td>
</tr>
<tr>
<td>Slow release (Nitamin, N-Sure, N-Demand)</td>
<td>≈</td>
<td>less?</td>
</tr>
</tbody>
</table>
Effect of N source on volatilization

150 lb N/acre on turf in late Sept.

- 0 N
- AN
- Dry Urea
- UAN Dribble Band
- PCU
- NBPT-urea

NH₃ Volatilization (mmol per day x 10⁴)

Days After Application:
- 0 to 2
- 2 to 5
- 5 to 8

Washington
Soil Temp = 50°F
Koenig unpub. data
UAN volatilization with and without Agrotain®

% of surface applied N volatilized over 7 days

<table>
<thead>
<tr>
<th></th>
<th>Check</th>
<th>UAN</th>
<th>UAN+Agrotain</th>
</tr>
</thead>
<tbody>
<tr>
<td>May (74°F)</td>
<td>0</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>July (86°F)</td>
<td>0.6</td>
<td>50</td>
<td>16</td>
</tr>
</tbody>
</table>

Grant et al. 1996, Manitoba
Does NBPT decrease volatilization losses in Montana (Engel et al)?

• Based on 17 studies:
 Average N lost from urea: 18.1%
 Average N lost from NBPT-urea: 6.5%
• Worst case-conditions for loss:
 moist surface with only sprinkles for weeks (Fertilizer Fact #59)
NBPT (Agrotain ®) reduces N loss

NH₃ losses observed for late-fall and winter app > than spring, even though temperatures were colder; mitigation by NBPT ≈ 65%

Coffee Creek MT Engel unpub. data
NBPT with broadcast urea can increase WW grain protein

90 lb N/acre

Urea

Urea with NBPT

Coffee Creek, MT
Engel unpub data

NBPT sig increased protein by about 0.4 to 0.8 % points for both years. NBPT only increased yield in Fall 2012.
Placement, timing, and source study at Moccasin

- Worst-case scenario for leaching – soils ~ 18” deep. 21.6 inches of precipitation from Oct 2010 to Sep 2011
- Timing: Fall vs spring
- Placement: Broadcast, seed-placed
- Sources (selected, for all see Fertilizer Fact 62):
 - Regular urea
 - Super U (w/ urease and nitrification inhibitors)
 - Urea mixed with Agrotain and N-serve (nit inhib)
 - ESN with seed (only in fall)
Effect of source and placement (fall applied) on grain protein and yield under high risk leaching conditions

Oct 2010 through Sept 2011 precipitation: 21.6”
Take home messages of Moccasin study

• In wet year, enhanced efficiency fertilizers produced similar or higher yields and protein as conventional urea
• In dry year, yields and protein were similar for EEFs and conventional urea (data not shown), so EEF net revenue would be lower.
Questions on EEFs?
Foliar N facts and considerations

• Only 8-11% of foliar applied liquid urea was taken up by leaves, whereas 37-67% of soil applied N was taken up by plant in same study (Rawluk et al. 2000)

• ½ inch rain (have you been living right?) or irrigation to soak into soil

• If scab risk, do not irrigate within 5 days of flower, so time foliar accordingly.
Source and rate of N affect leaf burn

- 32% UAN applied at heading caused more flag leaf burn and reduced grain yield more than an equal amount of N from foliar urea
- Flag leaf burn increased with N rate regardless of source, max suggested rate is 30 lb N/ac

Brown & Long 1988, Parma, ID, irrigated winter wheat
Fertilizer leaf burn

• Reduce to 20 lb N/ac max if combined with herbicide

• Leaf damage increased with:
 Surfactant + more than 20 lb N/ac of 28-0-0 UAN
 Urea + Agrotain®
 Sulfur

http://www.msuweeds.com/assets/Annual-Results/2010-Results/Wheat/2010ResultsWT02-10.pdf

• Less leaf burn at beginning of stem elongation than at 2nd node visible, and with added S, but may not translate to increased yields (Phillips 2004)
Foliar source and placement effect on irrigated spring wheat leaf burn and grain protein

Brown 1995, Idaho, Irrigated SW
All received top-dress at tillering to produce 120 bu/ac, Yield was not sig different among treatments.
Pre-plant plus foliar P offers most consistent yield benefit

Oklahoma, fine silty loam
Olsen P 6 ppm, TSP incorporated preplant
Mosali 2006
Foliar application of micronutrients

Micronutrients should not be applied unless deficiency is identified through:

- soil analysis (see EB0161 for soil applied fertilizer guidelines)
- tissue sampling
- visual deficiency symptoms (MT4449-9)
Micronutrient tissue concentrations, foliar fertilizer sources and rates

<table>
<thead>
<tr>
<th>Element</th>
<th>Limiting tissue concentration (ppm)$^1.$</th>
<th>Fertilizer source$^2.$</th>
<th>Rate (lb/ac)$^2.$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boron</td>
<td>3</td>
<td>sodium borate</td>
<td>0.3-0.5</td>
</tr>
<tr>
<td>Copper</td>
<td>5</td>
<td>chelated</td>
<td>0.2-0.25</td>
</tr>
<tr>
<td>Iron</td>
<td>50</td>
<td>chelated</td>
<td>0.15</td>
</tr>
<tr>
<td>Manganese</td>
<td>25</td>
<td>chelated</td>
<td>0.5-1.0</td>
</tr>
<tr>
<td>Zinc</td>
<td>20</td>
<td>chelated</td>
<td>0.3-0.4</td>
</tr>
</tbody>
</table>

Best applied in spring
Sulphate and oxysulphate are not recommended

Questions on Foliar?
Conclusions

• Soil tests can increase yield and/or save on fertilizer costs, and decrease environmental risks.
• Soil tests for N are best done in the spring, can be done in fall for P and K, and not worthwhile for S.
• Tissue sampling can help with in-season adjustments.
• There are tools available to help determine fertilizer needs and rates.
Conclusions continued

- NBPT (Agrotain®) helps reduce urea loss to volatilization and can increase grain protein.
- Slow and controlled release fertilizers tend to be more beneficial in wet than dry conditions.
- Foliar applications are useful for in-season adjustments.
- Foliar N is best followed by rain or irrigation.
Additional info at:
http://landresources.montana.edu/soilfertility

Soil fertility publications:
Go to “Extension Publications”
NEW! *Nutrient Management for Forages*
a) Nitrogen and b) PKS and Micronutrients

Fertilizer Facts and economic model:
Go to “Fertilizer Information”

MT research data on volatilization: Fertilizer Facts 59 & 60, and
http://landresources.montana.edu/ureavolatilization

This presentation: Go to “Presentations”
Questions?

Watrous, SK, 1920s