Fertilizer Management for Turf and Ornamentals

January 31, 2017, Assoc. MT Turf, Ornamental & Pest Professionals by Clain Jones, 406 994 6076; clainj@montana.edu

MSU

Dept Land Resources and Environmental Sciences

If you give a moose a clicker...it will:

- A. Pay attention
- B. Improve its golf score
- C. Calculate fertilizer rates
- D. Fertilize the turf for you

25% 25%

25%

25%

Todays objectives

- Explain soil properties that influence nutrient availability
- Discuss management to improve soil fertility
- Evaluate nutrient deficiencies/toxicities by visual assessment and soil testing
- Calculate fertilizer rates based on soil tests
- Review fertilizer sources and timing

An Ideal Soil – yes, "soil", not "dirt" 🙂

- 50% Pore Space
 - 25% Air
 - 25% Water
- 50% Solid Material
 5% Organic Matter
 45% Mineral

45% mineral = sand, silt, and clay

- Clay is hard when dry, sticky when wet, forms ribbon when rolled between fingers – doesn't drain well
- Silt feels smooth, floury – very fertile

 Sand feels gritty between your fingers when moist – doesn't hold water or nutrients well

Texture effects on soil properties

	Drainage	Water holding capacity	Aeration	CEC
Sand excellent		poor	excellent	low
Silt good		good	good	med
Clay	poor	excellent	poor	high

Ideal is loam = approx. equal parts of each

Cation exchange capacity = parking spaces for nutrients on soil

- Indicates ability of soil to hold positively charged nutrients.
- Many essential plant nutrients carry positive charges. Example: Potassium (K⁺)
- A fertile soil has the capacity to attract and hold these nutrients.
- Soils with large surface areas, such as clay and organic matter, have more CEC and surface area and therefore are generally more fertile.

pH affects soil nutrient availability Most Montana soils are:

- 33% A. Generally alkaline (pH > 7.0)
- 33% B. Generally acidic (pH < 7.0)
- 33% C. "Gumbo" = too hard to sample
 - Which nutrients to watch?

Why are MT soils high pH?

- Most MT soils are highly calcareous = alkaline
- Even if surface soil isn't alkaline, the subsoil usually is
- Liming to increase pH doesn't make sense in our soils

Mollisol – common in Montana and or semi-arid regions

What is the best option to lower pH in highly calcareous soils?

A. Add elemental sulfur (S)	25%
B. Add gypsum (CaSO ₄)	25%
C. Add pine needles	25%
D. No reasonable option to	25%
lower significantly	

Adding elemental sulfur

AgVise Laboratories

What might happen if you add 230 lbs S/1000 sq. ft.?

- A. You spend \$366/1000 sq ft 25%
 B. Your soil pH will drop by at 25% least 1.5 units
 - C. Soil S levels will remain well 25% below toxic
 - D. Soil salt levels will improve 25%

Same study site – added 115 lbs gypsum /1000 sq. ft. with no change in soil pH

Salinity

- High salts (EC > 4.0)
 - reduce water availability
 - plant energy expenditure to exclude salts and take up water
- Sources
 - excess fertilizer
 - road salt
 - shale

Soil & Water Management Module #2

Management:

Image by J. LaForrest, Univ Georgia

- check irrigation water for salts
- water to flush salt below root zone 8-12" to leach salts from top foot of soil, but will also leach nutrients
- fertilize plants only when necessary
- limit fertilization when moisture stressed (e.g., summer)
- plant salt tolerant species by roadway and protect foliage from road spray with burlap shield in winter

Questions?

On to nutrient deficiencies

14 mineral nutrients have been found essential for growth of most plants:

Macronutrients	Micronutrients		
Nitrogen (N)	Boron (B)		
Phosphorus (P)	Chloride (Cl)		
Potassium (K)	Copper (Cu)		
Sulfur (S)	Iron (Fe)		
Calcium (Ca)	Manganese (Mn)		
Magnesium (Mg)	Molybdenum (Mo)		
	Nickel (Ni)		
	Zinc(7n)		

The macronutrients are simply needed in larger amounts by the plant than the micronutrients.

Nutrient deficiencies of the **bolded** nutrients have been observed in Montana

How to evaluate soil nutrient status

 Visual assessment of tissue: may identify what has been lacking to this point

Visual tissue assessment

In Nutrient Management Module 9 http://landresources.montana.edu/nm

U of Arizona

in later stages of deficiency)

What is/was deficient here?

- 33% A. Ability to spell
- 33% B. Time to read the bag label
- 33% C. Shouldn't have handed the moose the spreader

ID of 'problem' is not always clear cut

Questions?

On to soil tests

Advantages of soil testing

- ID current nutrient deficiency
- Help calculate fertilizer rates
- Save on fertilizer cost
- Decrease environmental risks

- Remove grass/mulch mat from top, sample 6 inches deep
- Combine 10 subsamples per 1000 sq. ft. or per acre turf
- Separate samples for, e.g., gardens, turf, shrub areas
- Use probe, auger or tulip bulb planter
- Best done in early spring, but not when soil is wet, therefore in our climate perhaps best done in late fall

Example soil test

LAWN AND GARDEN

AN	IAĽ	YTICAL	LABORA	TORY FI	NDINGS]		MIDWE	ST SUGG	ESTIONS	FOR GARDEN
SAMPLE IDENTIFICA	ATION BER	LINDA 267161	92					POUNDS PER	100 sq. ft.	1000 sq. ft.	Acre	
ANALYTE	UNITS	RESULTS	LOW	MEDIUM	OPTIMUM	V. HIGH	I	SUGGES	TED FERTILIT	Y GUIDELINE	5	
NITROGEN ORGANIC MATTER	%	4.6					1	NITROGEN (N)	0.29	2.87	125	
NITRATE-N	ppm	4										
PHOSPHORUS POTASSIUM MAGNESIUM	ppm ppm ppm	54 186 566						PHOSPHATE (P ₂ O ₂) POTASH (K ₂ O) MAGNESIUM (Mg)	0.11	1.15	50	
MICRO- NUTRIENTS SULFUR ZINC MANGANESE IRON COPPER BORON	ppm ppm ppm ppm ppm							SULFUR (S) ZINC (Zn) MANGANESE (Mn) IRON (Fe) COPPER (Cu) BORON (B)				For more information fertilizer applications www.lawnandgarden click on the Fertilizer Calculator link and en code: RCXKWDKF5G Surface Nitrate Depth
CALCIUM	ppm	2607					1	SUGGESTE	D AMENDM	NT GUIDELIN	ES	
SODIUM SOLUBLE SALTS EXCESS LIME RATE	ppm mmhos/ am	88 0.3 L						LIME				
pH BUFFER INDEX C.E.C.	meg/ 1000	8.1 18.6						ELEMENTAL SULFUR				

What if lab doesn't provide a recommendation (or is from another state)? Use Table 3 from MontGuide (MT200705AG) for N

Soil Test		Organic Matter (%)			
Nitrate - N	Location	< 1.5	1.5 – 3.0	> 3.0	
lbs /acre		l	bs/1000 sq.ft	•	
	Lawn	6	5	4	
<20	Tree/shrub	3	2	2	
	Garden	4	3	3	
	Lawn	4	3	2	
20-40	Tree/shrub	2	1	1	
	Garden	2	2	2	
	Lawn	2	1	1	
40-80	Tree/shrub	1	0.5	0	
	Garden	1	1	0.5	
>80	All	0	0	0	

Use Tables 4 & 5 from MontGuide (MT200705AG)

Olsen P	Garden	Lawn	Trees/shrubs			
(ppm)	lb P ₂ O ₅ /1000 sq.ft.					
< 4	5	3	3			
4 - 8	4	2	2			
8 - 12	3	1	1.5			
12 - 16	2	0	1			
> 16	12	0	0			
K (ppm)		q. ft				
< 75	3	4	2			
75 – 150	2	3	1			
150 – 250	1	2	0.5			
> 250	0	1	0			

Lawns vs. trees/shrubs

- Lawns and golf courses
 - higher N = lush green grass
 - Don't 'bloom' = less P & K
 - 70% sand, 15% silt, 15% clay = less compaction
 - Organic matter 33% by volume (2" in top 6") incorporated
- Trees & shrubs
 - avoid high N, lush growth is not winter hardy
 - P & K good for blossoms
 - Aim for loam = equal parts sand:silt:clay

Sample calculation

N required for lawn with 3.4% organic matter and 12 lb N/acre (< 20 lb N/acre): **4 lb N/1000 sq ft** (Table 3)

APPLICATION RATE:

 Using a 20-6-12 fertilizer, 20% N (0.20 lb N/lb fertilizer), 6% P₂O₅ and 12% K₂O

 To calculate the amount of 20-6-12 fertilizer to apply: (Required Amount of N) ÷ (Amount N/lb Fertilizer) = Amount of Fertilizer to Apply /1000 sq ft

(4 lb N/1000 sq ft) ÷ (0.20 lb N/lb fertilizer) = 20 lb of 20-6-12 /1000 sq ft

Your turn

	OM %	Nitrate –N ppm	P ppm	K ppm	рН
Test	1.8	18	14	300	7.5

Using this data from a soil report and Table 3 from Montguide, how much N required for a lawn? N ppm x 2 = N lb/acre

- A. 3 lb/1000 sq. ft. 33%
 - **B.** 4 lb/1000 sq. ft. 33%
 - **C.** 5 lb/1000 sq. ft. 33%

How much 20-6-12 fertilizer is needed?

(Required lb N = 3) \div (lb N/lb Fertilizer) = Amount of Fertilizer to Apply /1000 sq ft

25% A. 30

- 25% B. 15
- 25% **C**. 5
- 25% D. Mental math before lunch?!

Hint: 20-6-12 means 0.20 lb N/lb fertilizer

(3 lb N/1000 sq ft) ÷ (0.20 lb N/lb fertilizer) = **15 lb of 20-6-12/1000 sq ft**

Phosphorus (P) and potassium (K)

	OM %	Nitrate –N ppm	P ppm	K ppm	рН
Test	1.8	18	14	300	7.5

15 lb of 20-6-12/1000 sq ft

How much P does this apply?
15 lb of 20-6-12/1000 sq ft x 0.06 = < 1 lb P₂O₅/1000 sq ft

Appropriate? See Table 4 Suggests 0 lb P₂O₅

<u>How much K does this apply</u>? 15 lb of 20-6-12/1000 sq ft x 0.12 = **1.8 lb K₂O/1000 sq ft**

Appropriate? See Table 5 Suggests 1 lb K₂O

Selecting fertilizer grade

15 lb of 20-6-12/1000 sq ft

- = < 1 lb $P_2O_5/1000$ sq ft vs. suggested 0 lb P_2O_5 = a little too much P
- = 1.8 lb K₂O/1000 sq ft vs. suggested 1 lb K₂O = a little too much K

What can you do? Will this fertilizer work for shrubs? Based on Tables 3, 4, and 5

	OM %	Nitrate –N ppm	P ppm	K ppm
Test	1.8	18	14	300
Tree/shrub need		1 lb N	1.5 lb P ₂ O ₅	0 lb K ₂ O

Chances are one grade will not fit needs of both lawns and shrubs

Questions?

On to fertilizer sources and timing

Conventional/chemical fertilizers

- No carbon
- Easy to store
- Higher nutrient concentration
- Custom formulated
- Easy to use but calibrate your equipment
- Liquid and solid
- Coated specialty products reduce leaching, volatilization, runoff losses.

Organic Fertilizers

- Bulkier
- Nutrient content low
- Nutrient content difficult to quantify
- Supply organic matter and other soil quality benefits

	General % of dry weight					
Туре	Ν	P_2O_5	K ₂ O			
Manure compost	0.3 - 0.5	0.1 - 0.5	0.2 – 0.6			
Garden waste	1 – 1.5	0.2 – 0.5	0.5 – 1.5			

Slow Release Fertilizers

- Release quickest in warm moist environments.
- Incorporate and apply early in growing season or use blend of quickly available source and slow release.

Application considerations

Conventional

- Water soluble sources can be lost to leaching or runoff, do not apply on snow, before heavy rains or snowmelt
- In active healthy soil (e.g. not frozen) can be taken up within a few days

Organic material

- Takes time to decompose and become available
- N may be tied up in the short term
- Manure creates rapid build up of P and K if fertilizing to meet N needs, can burn with salts, may contain residual herbicides

Timing

Shrubs/trees

- Newly planted: best to provide fertile soil than fertilizer first 1-2 years to minimize damage to roots and excessive vegetative growth
- Established: early spring

Lawn

- New: early spring or prior to spring seeding
- Established:
 - split total into monthly applications each max 0.5 lb/1000 sq. ft
 - home lawns, 3 times, about Memorial day, Labor day, and after last mowing but 4 weeks before soil freezes
 - If skip one, then skip the first. Last is most critical for the following year green-up.
- Too much in fall encourages gray snow mold

• Understanding soil properties guides proper fertilization

- Soil testing is an important tool to calculate fertilizer rates, maximize plant heath, protect environment
- The right source, rate and timing leads to optimal fertilizer use and plant health.
- The foundation of healthy plants is healthy soils

For additional information on nutrient cycling and fertilization

http://landresources.montana.edu/soilfertility

Click on "Home Gardening" for Montguide pdf

Upcoming KSU webinar: "Solving Turf puzzles", March 8, 9 am. To join go to: http://msuextensionconnect.org/gpdn2/

