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Introduction to Capstone Paper 

Santo Mallon 

 

Welcome reader to the capstone conglomeration of the Montana State University LRES 

Autumn 2023 class. The following is a collection of papers and reports from a total 12 people, 

generally divided into 3 groups, and myself squeezed into the many middles and enveloping the 

periphery. The content of this great report will be explained in a moment, but let us first start 

with a  paragraph on the formatting, so if you don't care, you can just skip to the next paragraph, 

easy peasy. 

 There are a total of 8 different papers, merged into 3 (consisting of 1 paper of 1 part, 1 

paper of 4 parts, and 1 paper of 3 parts) broader papers. In between these papers are brief 

intermissions providing context and connections. References and further reading, for those 

curious, will be combined at the end of the paper for all sections. Several parts of this paper 

include endnotes, ranging from fun topics we don't have enough time to talk about, added detail 

and stories that we find worthwhile but are unable to fit in, or stuff like bonus math, definitions, 

and context. These endnotes will be formatted as: [1] and can be found similarly at the bottom of 

each major section.  

 The sections of this paper begin firstly with a paper on water, with a specific focus on the 

Gallatin Valley of Montana. The topics included in this water paper range from scarcity issues to 

the engineering of our occasional excess stormwater, as well as some of the pollutants that end 

up in our waters, including new revelations such as those regarding PFAS, and finally ends with 

a discussion on the water access laws of Montana and what we can do to keep our waterways 

clean. 

The second part of this paper shifts gears, moving from water to something important not 

just in our waters, but to all life. Phosphorus. While it may seem somewhat disconnected from 

the water topic of earlier, it was actually Phosphorus that began the whole process of this paper, 

which the Water paper then evolved to their own marvelous ends. Going back to where it all 

began, we talk about not just Phosphorus in general, but take a deep and pointed dive into the 

role of Phosphorus in farmland, the way it cycles, how it gets added, used, and what happens 

when we end up with too much and where that ‘too much’ goes.  
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 The final part of this great endeavor keeps the focus on Phosphorus, but rather than 

looking at a strictly Environmental or Agricultural Science viewpoint, shifts to one more 

understanding of the humanities and the stories that make Phosphorus ultimately important to us, 

the humans. These include, but are not limited to, some fun stories about The Land Down Under, 

and how the first Euro-Australians had particular trouble adapting to the harsh realities of a 

Phosphorus-poor landscape, a discussion on where the Phosphorus that was brought to Australia 

came from and the paradoxically atrocious effects for the people who live in those places, and 

finally a conversation in how we can close some of our Phosphorus losses and what that means 

for the sustainability of our futures.  

 While long, varied, and occasionally confusing (usually my fault), we hope you enjoy the 

many perspectives presented in this paper. This is the culmination of, depending on your 

interpretation, anywhere between a combined 4, 48, or 864+ months of work and dedication to 

understanding the world around us and learning how to communicate those revelations to a 

populace far beyond what we ourselves are familiar with.  

Thank you for reading, and enjoy.  
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Navigating the Flow of Bozeman Water Resources 

Jeremy Emmer, Jonathan Landin, Emily Carey, Kacie Donaldson, and Audrey Reynolds 

 

“We never know the worth of water till the well is dry” -Thomas Fuller 

Introduction 

Water and its abundance serve as a crucial factor for biological sustenance. This 

document commences by providing an extensive examination of the water resources within 

Bozeman, Montana. It underscores the significance of adopting sustainable practices in water 

utilization and management, considering the existing water supply and the expanding population 

in the vicinity. Furthermore, it delves into the existing measures as well as prospective solutions 

for addressing these challenges.  

Part of what “fills” the well of water resources is stormwater, which arises through 

increased populations as mentioned previously. This section emphasizes the importance of 

properly managing stormwater by the city for the purposes of maintaining both its stormwater 

pollution permit as well as the health and well-being of residents. The end of this section 

explores future options that the city can start to use, or increase their utilization of, to further 

reduce the impacts of stormwater on local waterways. 

Abundance of water resources is meaningless without a thorough analysis of its quality. 

This section develops an understanding of sediments in waterways and how the resulting 

turbidity impacts local waterways. Following, is a section on nutrient enrichment which further 

explores some of the consequences of stormwater as well as . After this point, while still 

focusing on Bozeman, the paper shifts to a broader perspective to analyze microplastics and 

PFAS in both the general sense as well as how it affects local waterways. 

Streams and rivers have served a multitude of purposes from the beginning of time, 

starting with providing water and fish for communities, to becoming a place for people to 

recreate. The paper concludes with Montana stream access laws, which brings in people from all 

over the world to indulge in streams and rivers in a variety of ways. With an influx of people 

using Montana waters, there becomes an increase of pollution. This section brings an 

understanding to the complex language of the constitution and case law into an environmental 

and recreational light. Also, it shows how human influence contributes to water quality and 

quantity. 
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Water Quantity in Gallatin Valley 

Jeremy Emmer 

Introduction 

 Water in the western US is the most vital resource and its abundance is necessary for all 

forms of life. In the arid landscapes of the Western United States, where vast expanses of deserts, 

rugged mountains, and sprawling cities coexist, the intricate dance between water supply and 

demand has never been more critical. Bozeman, Montana has no exemption from this; with 

depleting yearly snowpacks and increased population growth, Bozeman is predicted to have a 

gap in water supply and demand in its near future.  

Bozeman is classified as a semi-arid region and is located in a closed basin in south-

western Montana. Bozeman has three major water sources: Hyalite Reservoir, Sourdough Creek, 

and Lyman Spring. Hyalite Reservoir and Sourdough Creek are sourced from snowpack in the 

Gallatin Range and account for roughly 80% of Bozeman’s drinking water. Lyman Spring is a 

groundwater source and accounts for the last 20% (Ahlstrom 2023). Although Lyman is 

classified as a groundwater source, it is essentially also a snowpack driven system, where all the 

water has infiltrated through the Bridgers from the previous year's snowpack. 

 Gallatin Valley has a total population of 124,857 as of 2022, and is one of the most 

rapidly growing counties in the U.S. (U.S. Census Bureau 2022). Climate change is inducing 

elevated average temperatures within this region, resulting in an increased influx of atmospheric 

moisture in the form of rain, consequently diminishing snowpacks and depleting reserves. This 

combination of factors has led experts to question when Bozeman’s water supply is going to run 

out. An estimate in 2013 stated there would be a gap in supply and demand sometime in the next 

50 years. More recent estimates have given Bozeman 4-10 years to change the way we use water, 

estimating that we could run into major issues as soon as 2027 if we don’t reduce our water 

consumption (Ahlstrom 2023).  

This section embarks on a comprehensive exploration of the underlying factors 

contributing to water scarcity in the Gallatin Valley. It commences by analyzing the overarching 

water consumption patterns within the region. Secondly, it delves into the distinctive attributes of 

Bozeman's geographical context and its impact on the water scarcity dilemma. Lastly, this study 

examines innovative and sustainable solutions aimed at addressing this pressing issue. 
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Water Usage 

 Bozeman is becoming an increasingly popular destination to live due to its pristine 

surrounding landscape, access to outdoor recreation, and community safeness. According to city 

engineer Brian Heaston, the city's population has more than doubled between 1980 and 2020, but 

overall water use by the city was actually slightly lower last year than it was 40 years ago. The 

per capita daily water use in 1980 was 291 gallons. It was 114 gallons in 2022 (Shelly 2021). 

This significant reduction in per capita water use over the last four decades is a beacon of hope 

for current residents in the region.  

 

Figure 1: Per Capita Water Use and Population Growth in Bozeman Montana from 2013-2022 

 

Figure 1 shows average daily water demand represented by the blue bars, and population 

growth represented by the yellow line, from 2013-2022. This graphic provides similar insight as 

Heaston, that although the population is growing, per capita water use is actually decreasing 

(Figure 1, Ahlstrom 2023). If residents of Bozeman can maintain or enhance this trend in the 

coming years, it signifies a positive step towards long-term water resource sustainability and 

responsible population growth management in the area. 
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Figure 2: Seasonal Water Usage in Bozeman, Montana from 2018-2022 

 

To better understand how city residents are using water, we can look at data that 

examines how much water was used per month by different customer classes from 2018-2022 

(Figure 2, Ahlstrom 2023). Water use skyrockets throughout the summer relative to other times 

of the year. It is also important to note that the largest spike in water use is single family 

residential homes which is directly correlated to irrigation of personal lawns. Bozeman’s City 

Manager Jeff Mihelich stated that during a normal summer, 50% of the city’s potable water is 

used for lawn irrigation (Shelly 2021). This represents a particularly imprudent and inefficient 

allocation of our most precious resources. Efforts to promote water conservation and responsible 

lawn care practices are crucial to ensure a sustainable and environmentally responsible future for 

our community.  
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Figure 3: Projected Population Growth and Water Demand for Bozeman, Montana from 2020-2040 

 

 To understand the demands of our growing population on future water supply, we can 

consider projections of population growth and water availability (Figure 3, Ahlstrom 2023). The 

dark line represents Bozeman’s population growth (4.3%) from 2020 to 2040 and the green bars 

represent overall water use by the city. The water supply is calculated at two different climate 

scenarios: given the current climate, weather patterns, and historical hydrological cycle, 

Bozeman has a current reliable supply of 11,042 acre-feet of water. The second scenario adds in 

a “Climate Change Level 2” where future drought drops our reliable supply to 9,011 acre-feet, 

with 25% precipitation and 75% temperature. For scenario one, Bozeman’s population will reach 

a point where it exceeds its current reliable supply around the year of 2031. For scenario two 

with depleted environmental conditions, Bozeman could run into supply and demand issues as 

soon as the year 2027. This model has sparked headlines and scared local residents with the 

looming idea of a water supply doomsday. It has led to large conservation efforts that hope to 

preserve Bozeman’s future.  

 

Bozeman’s Geographical Location 

 Bozeman has a unique location within the local watershed that separates it from most 

other major cities and regions of population growth in the west. Where most towns and cities are 
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built next to large rivers or downstream from major reservoirs filled by massive rivers, Bozeman 

sits dangerously close to the top of its watershed. The definition of a closed basin is when all 

available water has been allocated to various uses (Svendsen 2005). For Bozeman this is the 

case, and efforts are placed on increasing the productivity or value of every drop of water. 

 

Figure 4: The Three Separate Watersheds for Bozeman, Montana  

 

This unique location increases the difficulty of finding solutions to the supply and 

demand issue. The city has discussed bringing in water that originates outside of the valley but it 

is unrealistic and extremely expensive. In order for Bozeman to bring in water from Canyon 

Ferry Lake, for example,  the water would need to be pumped up over the Horseshoe Hills, and 

typically efficient water transport relies on harnessing gravity rather than opposing it. There are 

also legal issues involved with obtaining water from outside Bozeman’s watershed. The water 

rights law in Montana states “If the owner of a water right wishes to change the point of 

diversion, place of use, purpose (beneficial use), or place of storage (including adding storage), 

they must apply for and be granted a change authorization (“change in use”) through the 
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Montana Department of Natural Resources and Conservation” (Sigler 2017). Modifying water 

rights is a complex and lengthy procedure, rendering the task of making changes particularly 

challenging.  More straightforward solutions are available within the valley and will be 

elaborated upon in the following section. 

 

Solutions 

Each and every individual residing in this valley has the potential to exert an influence, 

whether substantial or minor, on the water conservation problem. Modest personal initiatives of 

water use reductions across extensive populations and extended time frames is one of our best 

hopes. As the city of Bozeman affirms, "Straightforward solutions can yield a significant 

cumulative effect" (City of Bozeman 2023). Furthermore, it is imperative to underscore that the 

preservation of water within the watershed carries a significantly more cost-effective proposition 

compared to the importation of water from external sources (Ahlstrom 2023).  

Based on the data the biggest “waste” of water that occurs in Bozeman is watering lawns 

and gardens. As mentioned earlier, in the summer months, 50% of the city’s drinking water is 

used to maintain residential short-cut non-native turf. The city has made several attempts to 

mitigate this situation but it's far from enough. They have created a drought plan with four 

stages, the amount of water they are attempting to save, and different actions that need to take 

place for that to occur. In the dry summer of 2021 Bozeman declared a stage two drought, where 

the following lawn watering rules were applied: Single residential properties with odd-numbered 

addresses: Saturday, Wednesday single residential properties with even-numbered addresses: 

Sunday, Thursday. All others (multi-unit, HOAs, commercial, industrial, government): Tuesday, 

Friday. No watering between the time of 10am-6pm. Although this system dropped water use by 

20%, it’s ridiculously organized and impossible to enforce. Future reform of this regulation is 

crucial for improved applicability and enforcement, even though sufficient data to do so is not 

currently available. 

 The city has also been attempting to pay residents and business owners to upgrade to 

high efficiency sprinkler nozzles, smart controllers, rain sensors, drip irrigation and even drought 

tolerant plants (City of Bozeman 2023). They have revised their landscape standards so that new 

residential projects are allowed 35% turfgrass for single family homes and 20% for commercial 
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(City of Bozeman 2023). The remaining majority of the landscape must be equipped with 

drought tolerant landscaping.  

The city is also offering a variety of free products that help conserve water on the 

personal scale. They offer mulch to put at the base of trees to hold more moisture in, shower 

heads that release 1.5 gallons of water per minute as opposed to the average of 2.5, and faucet 

aerators and spray valves that reduce water use from an average of 2.2 gallons per minute, down 

to 0.5-1.0 gallons per minute (City of Bozeman 2023).   

With Bozeman being one of the most rapidly developing areas in the country, water 

conservation specialists are troubled with how to regulate new development (U.S. Census Bureau 

2022). The new 2023 water conservation plan highlights a 1:1 strategy, where new developments 

must offset their required demand by efficiency. For every acre foot of water used by the new 

development, they must offset an acre foot of water by different water efficiency strategies. This 

could be projects that reduce on-site demand as well as investing and participating in retrofitting 

offsite existing projects. This plan is scheduled to go into effect in 2033 and could yield massive 

water saving initiatives from groups that previously would have not participated.  

In confronting water scarcity, Bozeman is part of a global narrative. Diverse civilizations 

have faced and triumphed over comparable challenges, revealing a collective ability to navigate 

and overcome issues of water scarcity. One case study that could be useful for Bozeman to 

consider is from Cape Town, South Africa, which has a similar climate to Bozeman, most of its 

precipitation comes in the winter and there are generally dry summers. Cape Town has a much 

larger population than Bozeman, growing at a steady rate of 2.57% (Kerri et al. 2017).  

Cape Town faced a major water crisis in 2017 where the city was only 90 days from 

turning off the taps. Through various conservation efforts they were able to avoid this crisis and 

refill most of the nearby dams from 37% (last 10% is unusable) to 80% capacity (Kerri et al. 

2017). Drawing inspiration from Cape Town's approach, we can enhance the effectiveness of 

Bozeman's water conservation initiatives. Cape Town implemented water saving competitions 

between households, which shows that there's power in tapping into people's competitive spirits. 

This community-driven approach could be a smart move for Bozeman. The idea of imposing 

fines for excessive water use, something Cape Town did successfully, can help encourage people 

in Bozeman to follow the rules more closely. We could also borrow from Cape Town's playbook 

by banning water usage for non-essential purposes – like irrigation, in order to preserve 
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Bozeman's water supply (Kerri et al. 2017). This could potentially be the best solution to this 

problem in Bozeman where we use an outrageous amount of water for lawn irrigation. By 

adopting some of these lessons from Cape Town, Bozeman can create a more comprehensive 

water conservation plan, tailored to its own unique needs, and help ensure a more sustainable 

future. 

 

Conclusion 

In conclusion, the issue of water scarcity in the Gallatin Valley, particularly in Bozeman, 

Montana, is a pressing concern exacerbated by a combination of factors such as population 

growth, changing climate patterns, and inefficient water use. Despite the city's population 

doubling over the past four decades, there has been a commendable reduction in per capita water 

consumption, offering hope for sustainable practices. However, the excessive use of water for 

lawn irrigation during the summer months remains a significant challenge. Efforts to promote 

water conservation, responsible lawn care practices, and sustainable solutions are essential to 

address this issue.     

The looming 2027-2031 deadline, when population growth is predicted to surpass the 

current reliable water supply, underscores the urgency of the situation. The existing drought 

plans and water-saving measures have made some progress, but more radical actions may be 

necessary to ensure the sustainable use of this vital resource. Each resident's contribution, no 

matter how modest, can collectively make a significant impact in preserving Bozeman's water 

resources for future generations. As the community unites to tackle this challenge, innovative 

and sustainable solutions will play a pivotal role in securing a water-secure future for the 

Gallatin Valley. 
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Stormwater  

 Jonathan Landin 

Introduction 

Stormwater is the water from rainfall, snow, or other inputs flowing across land or an 

impervious surface where it is not able to be absorbed into the ground. This runoff collects leaf 

litter and decaying organic material, in addition to human-made pollutants such as fertilizers or 

trash, carrying them toward drainages. Roadside drainages then lead into underground pipes, in 

the case of urban areas, which transport the polluted water into local or regional waterways 

without any processing or treatment. It is this lack of treatment for stormwater that can lead to 

impairment or destruction of local or regional waterways. 

Natural pollutants such as leaf litter or grass clippings can significantly impair the water 

quality of stormwater. This impairment arises from two critical issues associated with organic 

materials in water, oxygen depletion and release of phosphorus and nitrogen. Oxygen depletion 

results because the microorganisms that break down the material rely on aerobic processes which 

consume oxygen. Phosphorus or nitrogen release is also a secondary consequence of 

decomposition, when the nutrients bound within the material are released in a bioavailable form. 

Human-made pollutants include common household items such as fertilizer which is 

applied to flower beds or entire lawns to maintain the health and well-being of the vegetation by 

supplying critical nutrients such as nitrogen and phosphorus, both of which are critical for 

terrestrial and aquatic life. However, in both systems too much of any nutrient is detrimental to 

the system, the critical difference though is the quantity.[1] 

With the aforementioned considerations in mind, nutrient enrichment and other 

contaminants entering drinking water supplies is becoming increasingly concerning. With 

increased dependence on plastic products and synthetic nutrient applications to maintain current 

standards of living in addition to urban aesthetics, considerations of stormwater must be 

addressed. Given the pace of population growth and development in Gallatin County, how can 

current and future technologies be used to decrease the environmental impact of urban 

stormwater runoff? Additionally, how can these new innovations and methods be applied to 

cities such as Bozeman? 
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Background 

Stormwater has been a problem for humans for as long as cities or permanent settlements 

have been around. Constant occupation of one place for the purpose of habitation results in soil 

compaction, which decreases the ability of the soil to quickly capture and retain moisture. This 

problem arises because compaction decreases the spacing between soil pores which limits the 

ability of water to penetrate and percolate through the soil profile, thus allowing for overland 

transport of the water. With the creation of permanent settlements, permanent infrastructure 

became a necessity, which worsened the problem of stormwater management. This was due to 

the use of impervious materials, such as rocks, which were excellent for easing the movement of 

humans, but made it increasingly difficult for water to penetrate the soil without overland travel. 

The creation of permanent infrastructure necessitated the creation of stormwater 

management. It became a necessity to divert the overland travel of water before it reached major 

population centers. This can be seen in depictions of ancient Roman road designs with the road 

having a gradual arch to it, thus diverting the water into the sides of the road, which could then 

feed into drainage ditches (Davies 1998). Arching of roads, or “outsloping”, is a construction 

industry standard practice to this day. Outsloping of roads, trails, or other surfaces, allows for the 

rapid drainage of stormwater away from the surface and into new areas to either capture that 

water, like the side of the road, or move it to an alternate location (drainages, diversion ditches, 

culverts, etc.). 

Modern adaptations of this design have divided roads into individual segments. Each of 

these segments consists of one or multiple storm drainages which collect overland flow from a 

predetermined area outlined in the road design prior to construction, after which they will be 

placed underground. During a storm event, these individual segments capture the majority of the 

flow and funnel it into a singular pipe, after which it eventually leads into a main discharge pipe, 

which increases the efficiency of stormwater removal from undesirable areas. 

After enough water has accumulated on an impervious surface, and after flowing through 

underground pipes, it can wind up at one of three possible facilities prior to being discharged into 

a waterway. The primary location, as well as the oldest, is a wastewater treatment facility where 

it is processed with sewage prior to being discharged back into the waterway. This method is not 
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commonly seen in western states like Montana where stormwater is treated as a separate entity, 

and not mixed with sewage. 

Another possible destination would be a stormwater retention facility, which will 

completely stop the travel of stormwater and hold it in place until it either infiltrates through the 

soil or is evaporated. The final destination where stormwater could go is a detention facility. In 

contrast to a retention facility, a detention facility will only hold the water for a limited time and 

discharge it at a controlled rate. The latter two destinations are limited within the context of 

Bozeman, but there have been additional pushes to increase the number of detention and 

retention facilities. 

There is an additional fate to befall stormwater within the urban context, which is the 

discharge of it directly into public waterways with no treatment. This no treatment route is, 

unfortunately, the most common pathway by which stormwater is discharged in Bozeman 

(“MuniCode Library,” n.d.). Untreated water is allowed to be discharged through an MS4 permit 

in Montana, which outlines the requirements that a city or large development must adhere to 

allow for legal discharge of stormwater (Montana Department of Environmental Quality 2016). 

These MS4 permits require an annual review so that adjustments can be made accordingly in 

conjunction with good engineering, hydrologic, and pollution control practices. MS4 permits 

strictly apply to residential and commercial areas, but are invalid for industrial and construction 

areas (The National Association of Clean Water Agencies 2018). 

MS4 permits require permittees to develop and maintain a Stormwater Management Plan 

(SWMP), which includes best management practices (BMPs), control techniques, systems, 

designs, good standard engineering practices, and such other provisions necessary to reduce the 

discharge of pollutants from the permit. The permittee shall effectively manage a storm water 

program inclusive of the six minimum control measures: public education and outreach; public 

involvement and participation; illicit discharge detection & elimination; construction site 

stormwater management; post-construction site stormwater management in new and 

redevelopment; and pollution prevention/good housekeeping for permittee operations. 

While MS4 permits provide a legal framework for untreated stormwater discharge, 

annual reviews can leave stormwater departments in cities like Bozeman in limbo when it comes 

to pursuing new innovations and methods. Additionally, annual reviews can make it difficult to 
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secure funding for new ideas due to the fact that they might not be considered a universal best 

management practice (BMP), which is required for the MS4 permit to not be revoked. 

 

Current Methods 

Bozeman, as well as other cities, have implemented new solutions for stormwater 

management within the urban setting. While the aforementioned detention and retention facilities 

have helped to stem the issue of pollution from stormwater, they do not help the city in retaining 

its MS4 permit. To this end, the city has installed hydrodynamic separators (HDS’s), dry wells, 

and rain gardens, which have shown promise in retaining the city’s MS4 permit. 

HDS’s are an excellent tool for the separation of solids such as sediment or trash, or 

liquids like oil. HDS’s are installed beneath manhole covers where they intercept stormwater 

from underground pipes and give it a chance to slow down. This is done by taking advantage of 

gravity to either swirl water through a spiral track, or by forcing the water through baffles 

(StormTrap, 2022). With this method, solids and liquids are allowed to fall to the bottom or the 

top of the separator. Once separated, the HDS acts as a storage unit for the water contaminants, 

retaining them until they can be removed via a vacuum truck. Most of these units in Bozeman are 

installed along Main St. and Rouse Ave.[2] 

Dry wells are another tool used by the city of Bozeman which allow stormwater to 

translocate deep underground where it can undergo the natural filtration process through 

percolation. Generally, most of these dry wells are 3 feet wide at the surface and anywhere from 

30 – 70 feet deep and are hidden in plain sight along Main St. and the Montana State University 

campus. Many of these wells have a tree or shrub in the middle of the well surface to hide the 

opening and have a metal grate around the base to allow water to easily enter the well. The sides 

of these wells are lined with perforated casings which can be filled with crushed rock or left 

empty. 

Modern dry wells also include a pretreatment surface in the lining or surrounding the well 

which serves to bind up oil or other stormwater contaminants before entering the soil. This 

addition is included because soil can effectively bind natural pollutants (nitrogen, phosphorus, 

etc.), but frequently struggles to bind hydrocarbons, which are non-polar. Soil can act as a 

natural filter for pollutants before the water enters the aquifer (Edwards et al. 2019). This tool is 

extremely situational based on the height of the water table; if the water table is too high, the 
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chance of groundwater contamination exponentially increases. So, while this method works well 

in more arid environments, like Bozeman or the western United States, it would be impractical in 

areas with greater annual precipitation. 

Bozeman also utilizes rain gardens, which are like a roadside drainage, but more 

aesthetically pleasing. Rain gardens are created by depressing part of a landscape such that 

stormwater from surrounding surfaces is funneled into it. The depression can then be planted 

with native grasses, shrubs, and flowers which act as a sponge to soak up water as it infiltrates 

and percolates through the area (U.S. EPA 2023). This tool acts in a similar way to the dry wells 

mentioned previously but relies solely on vegetation and soil properties to act as a filter for the 

water before it eventually reenters the water table. 

With proper plants, a rain garden is able to absorb 30% more water and 80 – 90% of 

nutrient inputs compared to a regular lawn or garden (The Groundwater Foundation 2022). This 

increase in water and nutrient absorption is achieved through removing/altering the soil 

composition in the desired depression. Adding or replacing the existing soil with sand allows for 

water to be translocated downward at a much more rapid rate compared to previously. Sand, 

while being much larger in terms of size than the other components of soil (silt and clay), has the 

lowest specific surface area because of the lack of pores on the surface of each grain. Decreasing 

the available pore space means that water has less of a chance to bind to the individual grains, 

allowing for it to be pulled down by gravity far more quickly than it would be in a clay or silt 

dominated soil. 

While sand is a critical component for a rain garden, it does very little to hold the water 

in place long enough for it to drain properly, nor does it make the establishment of plants a 

simple matter. For these reasons compost, or some other form of organic matter, is added to the 

upper level of the soil. In regards to drainage, organic matter (OM) is far worse than sand due to 

its high specific surface area (SSA) of 560 – 800 m2/g (Chiou et al. 1990) for liquid absorption in 

OM (compared to 5.6 – 85 m2/g for clays[3] ( Macht et al. 2011). However, this poor drainage 

means that stormwater is held in place for an extended period of time. Retention of stormwater 

by using a component with poor drainage prevents water from continuing overland travel and 

also ensures that water remains in the soil long enough for vegetation to make use of it. 

Additionally, most plants grow poorly in just sand due to large pore spaces on individual grains, 

which struggle to bind up the necessary nutrients for plant growth.  
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Compost is also added for the opposite effect that sand has. Organic matter (OM), such as 

compost, has the highest specific surface area among the components of soil. With a specific 

surface area (SSA) of 560 – 800 m2/g (Chiou et al. 1990) for liquid absorption in OM (compared 

to 5.6 – 85 m2/g for clays (Macht et al. 2011) it can quickly bind up stormwater and prevent it 

from continuing overland travel. Once the storm event has ceased this water can then be either 

evaporated or translocated through the sand and into the soil by gravity. 

This combination of OM and sand allows for the retention and translocation of water at a 

quicker rate than in traditional gardens. Rain gardens are dry within 48 hours of the end of a 

storm while regular gardens can take anywhere from 48 hours to a week to dry post-storm due to 

the lack of sand for easy drainage. Additionally, this solution is cheap enough for regular 

homeowners to easily implement. The cost associated with building a rain garden ranges from 

($3 - $5 per ft2) for a DIY project or ($10 - $15 per ft2) if done by a contractor (Prince George’s 

County Department of the Environment 2022). 

Future Methods 

The future of stormwater management will be contingent on decreasing the number of 

impervious surfaces present in the urban setting and increasing the retention time before the 

water is discharged. Pervious pavement, bioswales, and green roofs could be excellent 

technologies for the city of Bozeman to incorporate into future development moving forward. 

Additionally, cheap methods such as rain gardens could be incorporated into residential rebate 

programs to help decrease the burden of city stormwater utilities and infrastructure. 

First among these potential future methods is pervious pavement/concrete, which is 

meant to provide the same support as regular pavement while being permeable to stormwater and 

allowing it to infiltrate into the underlying soil. This is achieved through adding coarser bedding 

material as depth increases below the pavers which can then feed into an underdrain if needed, or 

directly into the soil below. This material reduces the dependency on outsloping for walkways, 

allowing for a better walking surface for foot traffic. Additionally, pervious pavement reduces 

the burden placed on urban stormwater infrastructure by allowing for the stormwater to continue 

its original path. By preventing stormwater from being impeded, this method also has the 

potential to reduce the number of pollutants accumulating in the stormwater due to the decrease, 

or elimination of, overland travel. 
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Pervious pavement does come with some inherent flaws which make it unappealing for 

the city to adopt into future management plans. The primary one being that the lifespan of the 

material is not long enough to justify its use. Normal concrete has an average lifespan of 30 – 

100 years before it requires replacement or significant maintenance, but pervious 

concrete/pavement tends to only last up to 40 years. Material cost is another consideration, as 

regular concrete is usually cheaper at $110 - $165 per cubic yard (excluding labor). Pervious 

concrete tends to cost $200 - $270 per cubic yard (excluding labor). These two factors in 

conjunction likely deter Gallatin County from making the switch for large scale projects such as 

new residential neighborhoods or commercial areas. However, this also presents an opportunity 

for the county to shift to a smaller scale for implementation. 

Should the county want to adopt pervious pavement, it could implement a rebate program 

for homeowners. Rebates could be based on how much money is saved on a per person basis in 

terms of managing and maintaining current stormwater systems for the county or individual 

cities. This could then be paid to the homeowner in exchange for replacing their impervious 

outdoor surfaces, like driveways, with permeable materials. By using this method, the 

homeowner isn’t fully responsible for the cost of installing a more expensive system, the county 

fulfills part of its MS4 permit requirement, and drinking water is cleaner for residents. From the 

program, the county could also gather data to determine if it is cheaper in the long run to utilize 

these pervious systems because of the reduced burden on public infrastructure. 

The second potential future method is bioswales, which act in a nearly identical way to 

rain gardens but are meant to support a significantly larger area. Bioswales usually take the form 

of a vegetated strip between large impervious surfaces such as between roadways and sidewalks, 

or in between parking rows in a parking lot. These bioswales are placed on a shallow slope  

(<5%) in the low point of the desired area to capture and filter water in the same way a rain 

garden would. Unlike its smaller counterpart though, bioswales can often be combined with 

other BMPs such as check dams or even weirs on steep slopes (>4%). All of these BMPs 

working in conjunction with one another forms a “treatment train”, which is considered to be the 

most effective method of stormwater management (U.S. EPA 1999). 

Gallatin County, and the city of Bozeman in particular, already utilize swales, including 

bioswales, for managing stormwater in the city. But, beyond the stormwater angle there are a 

multitude of reasons for the city to invest more heavily into the implementation of this tool. Due 
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to the natural approach of swales, this tool can enhance urban biodiversity and provide habitat 

for native insects and plants while simultaneously improving the aesthetic and recreational value 

of urban areas. Incorporating green infrastructure such as this, urban areas can create visually 

appealing landscapes which serve to promote the well-being of residents. The synergistic 

interplay between these positive factors would allow the city of Bozeman to better align itself in 

creating sustainable urban development with ecologically resilient and ecologically balanced 

urban areas. 

Despite these positive factors, there are challenges associated with increasing the use and 

prevalence of bioswales and other swales in Bozeman. Maintenance requirements during the 

establishment phase of plants can be demanding on city resources, especially if being installed in 

high use areas. Bioswales are also only as effective as the soil they sit upon, meaning that 

significant resources may need to be allocated to ascertain where bioswales can even be 

considered, disregarding if it is useful in that area. This means that urban centers, like Bozeman, 

must carefully evaluate site-specific conditions while simultaneously investing in proper design, 

construction, and maintenance to maximize benefits. 

Green roofs, also known as living roofs or eco-roofs, are another innovative approach to 

stormwater management in urban areas. These systems involve the cultivation of vegetation on 

building rooftops, providing a range of environmental benefits, including stormwater control. 

Green roofs operate by absorbing and retaining rainwater through the plants and the growing 

medium, reducing the volume of stormwater runoff. This retention and delayed release of water 

aims to help alleviate the burden on stormwater infrastructure and help prevent issues such as 

flash flooding and erosion. The vegetation on green roofs also assists in the natural filtration and 

purification of rainwater, reducing the load of pollutants that might otherwise need to be treated. 

One significant advantage of green roofs is their ability to improve energy efficiency in 

buildings. The layer of vegetation acts as insulation, reducing heat absorption and energy 

consumption for cooling in the summer and providing additional thermal insulation in the winter 

(Minnesota Pollution Control Agency 2022). This dual functionality contributes to the mitigation 

of urban heat island effects and can lead to energy savings for building owners. 

However, the adoption of green roofs comes with certain considerations. The initial cost 

of installation is higher compared to traditional roofing systems, and not all buildings are 

structurally suitable for the added weight of a green roof (Minnesota Pollution Control Agency 
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2022). Additionally, the success of a green roof depends on factors such as climate, plant 

selection, and maintenance practices. Without proper care, green roofs can become a breeding 

ground for pests or invasive plant species, potentially compromising their ecological benefits. 

However, it is estimated that the average annual cost of upkeep is significantly cheaper over the 

lifespan of the green roof compared to a conventional roof (Porsche, U. and M. Kohler 2003). 

Green roofs offer a multifaceted solution to stormwater management by combining 

environmental benefits with energy efficiency. While their initial costs and maintenance 

requirements may pose challenges, the long-term advantages in terms of reduced stormwater 

runoff, improved water quality, and energy efficiency make green roofs a compelling option for 

sustainable urban development. However, the city must work in collaboration with scientists and 

homeowners to find a blend of plants that work well to manage stormwater without being an 

eyesore or money pit for the homeowner (Miller et al. 2010). 

 

[1] Terrestrial systems generally tend to have higher nutrient requirements than aquatic systems. 

For an example of this with Scots-pines, N fertilizer would have to be applied at a rate of 250-

1000 kg N/ha (~223 lbs N/ac) for the tree to begin showing signs of N poisoning (Jokela et al., 

1995). With phosphorus though, a gardener could use 20 lbs of 13-13-13 fertilizer (13% N - 13% 

P - 13% potassium) to cover a 1000 square foot plot, which would translate to 2.53 lbs of 

phosphate (or 110 lbs/ac). Of this, 43.6% (1.1 lbs) would be taken up by common garden 

vegetables like tomatoes or peas, but only 27.3% (0.7 lbs) would actually be used, leaving 72.7% 

(1.8 lbs) of the P to build up in the soil (Alabama Cooperative Extension System, 2023). 

Aquatic systems are significantly more sensitive to nutrient inputs than terrestrial systems. 

Animals in the water start to become poisoned by N, depending on the ionization state of 

ammonia, around 0.05 mg/L - 2.0 mg/L. This toxicity arises due to nitrogen bonding with the 

hemoglobin in the bloodstream, which prevents it from being able to adequately transport 

oxygen within the body, which ultimately results in death from hypoxia. However, aquatic plants 

are not as sensitive to fluctuations in nitrogen content. This is due to P being a more limiting 

factor in aquatic systems in comparison to nitrogen, while the reverse is true on land. Phosphorus 

generally maintains low background levels in freshwater systems (<0.05 mg/L), placing an upper 

limit on how much plants can grow (Spring Harbor Environmental Magnet Middle School & 

Kotoski 1997). When this level is exceeded as a consequence of nutrient inputs, the limitation on 

plant growth is raised substantially because the plants can uptake more N before P levels are 

depleted in the system. This results in the toxic algal or cyanobacteria blooms, depleting oxygen, 

thus killing most, if not all, life in the affected area. 
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[2] GIS web viewer for Bozeman infrastructure. Feel free to explore to gain a better 

understanding of where various structures, drainages, or other structures are within the city 

limits. https://gisweb.bozeman.net/Html5Viewer/?viewer=infrastructure  

[3] This depends on the type of clay in question (Осипов 1975). Clays that are 1:1, like kaolinite, 

are held together very tightly by hydrogen bonds, decreasing the SSA. 2:1 clays, like vermiculite, 

are weakly held together by colloidal forces which allow the clay to swell when it gets wet. This 

swelling increases the SSA of the clay while it is wet, and then decreases it when it dries. This 

results in soil heaving which can uplift sidewalk pavers or other solid surfaces. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://gisweb.bozeman.net/Html5Viewer/?viewer=infrastructure


22 

 

 

 

Water Quality in Gallatin County 

Kacie Donaldson and Emily Carey 

Introduction 

 Rapid urbanization within Gallatin County poses threats to freshwater ecosystems 

through increased pollutants and degradation of water quality. Urbanization directly increases 

surface runoff by increasing impervious landscapes, altering natural hydrology, channel 

morphology, sediment transport, stream temperature, and delivery of pollutants. Pollutants 

reported in Gallatin County include, but are not limited to organic pollutants, heavy metals, 

microplastics and PFAS, often traced to industrial waste, agricultural practices, and wastewater 

treatment.  

 

Sediments 

As urbanization continues to reshape the landscapes within Gallatin County, the 

influences on sediment dynamics and water quality within freshwater ecosystems becomes more 

of a prevalent question. Total suspended solids (TSS) refer to waterborne particles exceeding two 

microns and are commonly used as an indicator of water health (Water Science School 2018). 

These particles, suspended in the water column, may include soil debris, decaying organic matter 

and particles discharged from wastewater. TSS occur in the environment naturally through 

erosion or runoff, but their concentration is exacerbated by anthropogenic factors, most notably 

urbanization. As discussed before, urban expanse heightens sediment in water by increasing 

impervious surfaces leading to lower infiltration rates in soils and reduced vegetation cover 

(Kjelland et al. 2015). Due to human impact, increased pollutants, excess nutrients and unnatural 

particles, such as microplastics, can end up in aquatic systems, causing a decrease in water 

quality, increase in eutrophication, and aquatic organismal loss. As urbanization spreads and 

vegetation cover declines, surface runoff is intensified, which causes rain, often carrying various 

pollutants and sediments, to quickly move over the landscape and into nearby bodies of water 

(Kjelland et al. 2015). In Gallatin County, where sedimentation is not a major issue but 
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urbanization is rampant, concerns regarding the effects of excess sediment on water quality must 

be acknowledged to mitigate future issues that may arise.   

  

 

Turbidity  

High amounts of suspended sediments can cause water to lose transparency. The 

resulting cloudiness in the water is referred to as turbidity which can negatively affect water 

quality. Turbidity measures the scattered light caused by suspended particles in water and is 

commonly recorded in Nephelometric Turbidity Units (NTUs; Chamberlain & Ioannou 2019). In 

Bozeman, sediments in the water are not a major issue due to water treatment plants filtering out 

the sediments from the drinking water (Bozeman Water Treatment Plant 2022). The issues with 

suspended sediment and turbidity have been more prevalent in the surrounding areas of 

Bozeman, such as the West Fork of the Gallatin River and its tributaries up near Big Sky, 

Montana (Gallatin River Task Force 2021). Some of the streams in the Upper Gallatin watershed 

and the West Fork of the Gallatin watershed are impaired, thus, not meeting the state quality 

standards for sediment (Figure 7 & 8). The streams have sediment pollution largely caused by 

the topography of the landscape where landslides and large amounts of sediment runoff were 

likely to occur. Along with natural impacts on sediments, anthropogenic factors such as 

urbanization appeared to impact the sediment loads due to many of the sampling sites being 

along major roads (Figure 5 & 6). Some of the sites along the road ways such as West Fork and 

South Fork of the Gallatin along with the Taylor Fork showed a major spike in turbidity during 

spring runoff which was most likely due to both geography and the increased runoff from 

impervious surfaces 
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.  

Figure 5: Eight sites on the mainstem Upper Gallatin River and three sites on the Taylor Fork that were monitored in 

2018 to look at water quality (Gardner & Bednarski 2018).  
 

 
Figure 6. Eleven sites on the West Fork watershed that were monitored in 2018 to examine water quality. The 

yellow circles were monitored four times a year and the yellow circles with black X’s were continuous monitoring 

stations(Gardner & Bednarski 2018). 
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Figure 7. Turbidity values during pre-runoff, spring runoff, summer baseflow, and winter baseflow in 2018 in the 

Upper Gallatin Watersheds. Turbidity is a measure of water clarity, and naturally varies throughout the year with 

highest values during spring runoff. (Gardner & Bednarski 2018). 

 

 
Figure 8. Turbidity values during pre-runoff, spring runoff, summer baseflow, and winter baseflow in 2018 in the 

West Fork of the Gallatin Watersheds. Turbidity is a measure of water clarity, and naturally varies throughout the 

year with highest values during spring runoff (Gardner and Bednarski 2018). 

 

Larger surface runoff can overwhelm aquatic systems with excessive concentrations of 

sediment causing a loss of transparency in water (MacKenzie et al. 2022). Elevated turbidity 

levels can obstruct the penetration of sunlight into the water, preventing aquatic plants from 

photosynthesizing and stunting plant growth (NRCS 2012). Aquatic plants are essential for 
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providing oxygen and natural sediment traps for aquatic organisms’ habitat. When the cloudiness 

in the water is very intense, plants may die off, decreasing the amount of dissolved oxygen in the 

water. This is more prevalent in areas with slower moving water where water flow is not 

bringing in much oxygen and can result in high depletions of dissolved oxygen where organisms 

have to either adapt to the poor conditions or relocate. In some severe cases, dissolved oxygen 

concentrations can be so low that dead zones occur where no aquatic life can exist. Also, the 

reduction of light can impact the ability for aquatic species to see, causing alternative feeding 

patterns. Many species of fish also rely on vision to catch prey, so high turbidity can increase the 

time to locate food and can decrease the organism’s reactivity and foraging abilities (Higham et 

al. 2015). 

Moreover, inflated turbidity levels can directly affect the health of aquatic organisms. 

Fish and other organisms can ingest the suspended sediments which can lead to injuries to their 

gills and feeding challenges (Gallatin River Task Force 2021). Due to the variation in feeding 

patterns and complications with direct ingestion, reduced growth rate and increased loss of 

weight have been observed with long-term exposure to suspended sediments (Lowe et al. 2015).  

 

Nutrient Enrichment 

Algae, an organic suspended solid, is an important indicator of nutrient enrichment in 

freshwater ecosystems. Nutrient enrichment is caused from an excess in nutrients in a water 

body, typically nitrogen (N) and phosphorus (P). Both nitrogen and phosphorus are essential 

elements for plants, however excess leads to degradation of soil health and water quality, seen in 

eutrophication of water bodies. Excess fertilizer or pesticide application, animal manure, runoff, 

septic systems, and fossil fuel combustion are among the primary sources of nutrient pollution 

(Frei et al. 2021). Eutrophication of water bodies can exacerbate the effects of climate change in 

a positive feedback loop by increasing greenhouse gas emissions by, for example, shifting 

vegetation dominated by macrophytes to algae and ultimately increasing methane emissions 

(Beaulieu 2019). Alterations in precipitation patterns and temperature increases predicted as a 

result of climate change will increase nutrient loading and promote the growth of harmful algal 

blooms (Rodgers 2021). From the 2017 Montana Climate Assessment, it is expected to see more 

precipitation in winter months, less in summer, and warmer overall temperatures (Whitlock et al. 

2017), putting the Gallatin County at a heightened risk to nutrient pollution. 
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 Stormwater data collected from the City of Bozeman in 2017 showed that four of the 

eight tested sites showed significantly high levels of N and P. Measurements for nitrogen and 

phosphorus were reported in mg/L and compared to permit benchmarks, likely set by the EPA 

standards. According to the Gallatin Watershed Council, 15 streams in the Lower Gallatin 

Watershed did not meet state water quality standards in a 2019/2020 surface water monitoring 

report (GWC 2020). In 2022, the Montana Department of Environmental Quality proposed to list 

a section of the Gallatin River as impaired due to harmful algal blooms as a result of nutrient 

pollution (DEQ 2022). Nutrient enrichment is a threat to freshwater ecosystems throughout 

Gallatin Country. While certain contributing factors, such as fertilizer application rates may be 

decreasing with changes in land use and urbanization, new threats arise from increases in 

impervious surfaces and infrastructure.  

 Many sources of nutrient enrichment come from nonpoint sources which lack 

government regulation. The Clean Water Act addresses point source pollution, which has 

significantly reduced across the US. However, regulation of nonpoint sources is crucial to 

mitigating this problem, including fertilizer, animal waste, atmospheric deposition- often from 

vehicle exhaust or coal and oil-burning power plant emissions (Manuel 2014). Many 

contributing factors of nutrient enrichment can be mitigated with outreach and education. Using 

the correct amount of fertilizer and pesticide application rates will reduce the amount of nutrients 

left unused by crops and plants. Keeping livestock further from streams reduces the nutrients that 

infiltrate from manure. On a larger scale, transitioning to cleaner energy sources and safer 

practices, this problem can be mitigated. 

 

Microplastics 

Microplastics are small plastic particles, less than 5mm, that can come from fragments of 

large pieces of plastic or microbeads and from industries that manufacture plastics (Isaac and 

Kandasubramanian 2021). These particles can be found in everyday products including 

toothpaste, sunscreen and aluminum cans, along with a number of foods and water sources. In 

recent years, major concerns have been centered around the ingestion of microplastics by 

humans and aquatic organisms due to the potential risk of toxins and bioaccumulation. 

The two main categories of microplastics are primary and secondary (Lee et al. 2023). 

Primary microplastics are deliberately manufactured into small particles that are used in 
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cosmetics, detergents and industrial products, whereas secondary microplastics are typically 

larger pieces of plastic that break down into smaller fragments over time. Both of these 

microparticles have low biodegradation meaning they will stay in the environment for long 

amounts of time (Lee et al. 2023). Runoff from urban areas, industrial processes, wastewater 

discharge and large plastic debris are major sources of primary and secondary microplastics in 

water. In cities similar to Bozeman, outdoor recreation activities such as hiking, biking, fishing 

and boating introduce microplastics from fishing lines, nets, and deteriorating equipment. Rain 

can wash these particles into water bodies, transporting them downstream, where they can be 

found in the sediment, water column and the riverbanks in both urban and remote locations 

(Barrows et al. 2018). 

In Montana, studies have been done sampling surface water to examine the presence of 

microplastics. In Flathead Lake, microplastics were detected with highest concentrations near the 

most populated areas around the lake (Xiong et al. 2022). Similarly, microplastics have been 

detected throughout the mainstream and tributaries of the Gallatin River that are frequented by 

outdoor enthusiasts. The presence of the particles in the more remote tributaries of the Gallatin 

suggests that the microplastics have been primarily caused by outdoor recreation (Barrows et al. 

2018).  

In Bozeman, stormwater runoff can largely contribute to impairment in the city’s creeks 

causing debris, namely microplastics, to readily enter the water systems (Oliver 2022). In these 

urban areas, tire wear from vehicles is a major microplastic contributor, and can easily be 

transported to waterways via stormwater runoff. Consequently, as populations and developments 

in Gallatin Valley continue to expand, concerns about microplastics are increasing. Population 

size has been linked to increased microplastics in water systems due to consistent trends of more 

plastic waste and secondary plastic breakdown where populations are larger (Chen et al. 2022).   

 The proliferation of microplastics in the last several decades has raised concerns about 

their effect on humans. Research has detected microplastics in various foods, such as table salt 

and rice, along with raw water sources and treated drinking water, including tap and bottled 

water (Koelmans et al. 2019). Moreover, microplastics have been detected in human bodies 

including, but not limited to, the bloodstream, lungs and the placenta (Lee et al. 2023; Ragusa et 

al. 2021). The widespread presence has created concerns for human health related to 

bioaccumulation and potential toxicity from the microplastics. Additionally, microplastics can 
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sorb heavy metals and, when consumed, can be extremely toxic to some organisms due to the 

accumulation of contaminants (Munier & Bendell 2018). Most plastics have additives such as 

plasticizers, flame retardants, UV stabilizers and dyes that are used to create color, transparency, 

and resistance to degradation (Campanale et al. 2020). These additives are harmful to human 

systems and some are linked some to cancer or disruptions to the endocrine system. Although the 

studies on the effects of microplastics on human health are limited, there is rising concern for the 

impact on human digestive and immune systems, inflammation response, and newborns (Lee et 

al. 2023). Ongoing research needs to be a high priority to uncover all of the damage 

microplastics have on human health.  

Recreational activities, like fishing, are a major part of the culture that draws people to 

Bozeman, so keeping the water clean is imperative to the permanent community, tourism and 

overall ecological health of the natural environment. Unfortunately, microplastics have a far-

reaching effect, and aquatic health has also been heavily impacted. The microplastics that are 

washed into waterways can be harmful to aquatic organisms both indirectly and directly via 

ingestion and respiration (Miller 2020). Due to the small size of the particles, a variety of aquatic 

organisms from zooplankton to large fish, ingest these particles which can lead to impairments in 

feeding, gills, reproduction and growth (Isaac & Kandasubramanian 2021).  

Furthermore, microplastics may be able to make it through the aquatic food web and be 

transferred through organisms, causing bioaccumulation and biomagnification (Miller 2022). 

Bioaccumulation refers to gradual accumulation of microplastics and toxins over time within 

organisms due to repetitive uptake, while biomagnification is the movement of toxins or 

microplastics transferred from organisms via the food web resulting in an increased 

concentration of contaminants in higher trophic levels. Studies have shown that microplastics 

can bioaccumulate in both producers and consumers, further research needs to be done to 

confirm whether or not biomagnification can occur across aquatic food webs in the wild (Miller 

2022). 

 

PFAS 

 Per- and polyfluoroalkyl substances, denoted as PFAS, are a group of synthetic 

organofluorine chemical compounds used to make fluoropolymer coatings, found in clothing, 

furniture, food packaging, cosmetic products, fire-fighting response and training, non-stick 
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cooking surfaces, and adhesives. PFAS, commonly referred to as forever chemicals, encompass 

over 4,000 highly fluorinated man-made substances, composed of fluorine atoms attached to an 

alkyl chain. 

 These chemicals are extremely resistant to degradation in natural environments, have 

bioaccumulation properties, and are toxic to fish, wildlife, and humans. Bioaccumulative 

chemicals build up in human bodies and wildlife when they are absorbed and not secreted. PFAS 

are unique because they bind to proteins in blood in the human body, while most 

bioaccumulative chemicals build up in fatty tissues (Lewis 2022). Long chain PFAS can 

accumulate in the blood, liver, kidney, and bones, while short chain PFAS have been shown to 

accumulate in the lungs, kidneys, and brain (Lewis 2022). Similarly, studies have shown that 

PFAS accumulates in the fatty tissues of fish, which becomes a human and wildlife health issue 

because most cannot be eliminated with cooking (George 2023). The mobility of PFAS allows 

them to move through soils and contaminate ground water and drinking water because of their 

high water solubility and tendency to not bind to other materials. Short chain PFAS can migrate 

from soils to plants, and concentrate in edible parts of fruits and vegetables. The EPA explains 

that human studies have found associations between PFOA and or PFOS, exposure and effects 

on the immune system, cardiovascular system, human development, and cancer (EPA 2021). 

PFOS, perfluorooctane sulfonate, and PFOA, perfluorooctanoic acid, are the two most studied 

forms of PFAS (EPA 2017). 

 In 2021, the Montana Department of Environmental Quality published a PFAS 

monitoring report focused on urban and industrialized landscapes in Bozeman, Helena, Billings, 

and Great Falls, testing for 28 PFAS based on current analytical capabilities. Overall findings 

from this report showed that 58% of the sites tested had detections of one or more PFAS 

compounds. It was determined that multiple PFAS were present at moderate levels in at-risk 

sites, varying in magnitude depending on site location. Eight sites were analyzed in Bozeman, 

four of which showed non-detect values for the 28 PFAS. The highest concentrations of PFAS 

were in the East Gallatin River, one mile downstream of Springhill Road bridge (12.83 ppt), and 

the Mandeville Creek at Bozeman High School (26.4 ppt). Results indicate that PFAS are likely 

entering surface waters from wastewater treatment plants, industrial facilities, military 

installations, airports and urban runoff.  
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 The Montana DEQ released a PFAS action plan in 2020, aiming to address and quantify 

PFAS contamination as well as mitigation strategies. The five objectives outlined in the action 

plan include: to identify and inventory known and potential PFAS sources and sites, to provide 

public outreach and education, to protect drinking sources and ecology, to identify resources and 

funding and determine legislative restrictions, and to identify disposal options and reduce use of 

products that contain PFAS (Montana DEQ 2020).  

 The chemical nature of PFAS poses significant threats to freshwater ecosystems 

throughout Gallatin County. A study on PFAS in freshwater ecosystems found that some PFAS 

can partition to sediments and may act as a sink to serve as secondary sources for biotic 

exposure. This is especially prevalent when disturbed through dredging, storm events, 

bioturbation, or any developments (Lewis 2022). According to the EPA, there are currently three 

known techniques to effectively remove PFAS from drinking water and wastewater, including 

granular activated carbon, ion exchange resins, and high-pressure membrane systems, but any of 

these techniques entail costly solutions (EPA 2020).  

The drastic effects of PFAS have been demonstrated on the environment, wildlife, and 

humans, yet all of the papers read about PFAS stress the need for further research. Considering 

the rapid urbanization occurring throughout Gallatin County, PFAS pose a dangerous potential to 

the quality of our freshwater ecosystems.  
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Stream Access and Montana Recreation 

Audrey Reynolds 

Modern Montana is known for its big skies and environmental freedoms, but before 

environmental laws were put into place, the perception of Montana was much different. Viewed 

previously for its mass amounts of gold, silver, and gems, it was a mining hotspot in which 

people were willing to brave the cold to have acres of property and hopefully enough materials to 

make immense amounts of money, with little or no regard to the effects of the environment. In 

1972, Montana turned over a new leaf and a new constitution was put into place by the vote of 

the people. A shift had occurred: Montana was now focusing more on the environment instead of 

the intensive mining that had taken place for decades. Though mining is still a part of the 

economic culture of Montana (and the remnants of mining pollution is still stuck in our 

environmental systems), we are in a new era where recreational tourism is bringing in a lot of 

people, which in turn is bringing in a lot of money. The human race is willing to spend immense 

amounts of money to enjoy the rivers and mountains, and that’s something that is very important 

to Montana’s government. The main inflow of recreational money comes from boating and 

fishing, which is not just due to the beautiful streams and rivers, but also to the freedoms in 

public stream access laws. These laws protect both the common citizen and the intense fisherman 

when they are participating in almost any activity they enjoy within any stream and river in 

Montana. These laws differ from almost every other state in the country, and help to make 

Montana stay unique. Even so, are there downsides to allowing the public to access any 

waterway they want? Is the promise of positive financial gain and a good reputation just too 

good for the Montana government to pass up? Or should public citizens really have the right to 

access streams and rivers in any capacity that they please? 

The Montana Constitution is a lengthy piece of writing that outlines all the laws in 

Montana. Diving into this, the laws for recreating in streams and rivers are tucked into Title 23, 

Chapter 2, Part 3. An easier read is the simplified version of the stream access laws within a 

brochure curated by Montana Fish, Wildlife, and Parks. As stated in 23-2-302§1, MCA in the 

constitution, “Except as provided in subsections (2) through (5), all surface waters that are 
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capable of recreational use may be so used by the public without regard to the ownership of the 

land underlying the waters.” Without reading all the subsections, the Montana Fish, Wildlife, and 

Parks brochure incorporates them into a more condensed definition: “All surface waters capable 

of recreational use may be so used by the public up to the ordinary high-water mark without 

regard to the ownership of the land underlying the waters. The limit on water-related pleasure 

activities is the water resource itself. The laws do not apply to recreational use of lakes.”  

What is an ordinary high water mark? The Montana Constitution definition in 23-2-

301§9, MCA is “ the line that water impresses on land by covering it for sufficient periods to 

cause physical characteristics that distinguish the area below the line from the area above it. 

Characteristics of the area below the line include, when appropriate, but are not limited to 

deprivation of the soil of substantially all terrestrial vegetation and destruction of its agricultural 

vegetative value. A flood plain adjacent to surface waters is not considered to lie within the 

surface waters' high-water marks.” This concept is one of the reasons that public citizens get 

confused and sometimes even arrested on private property. The high water mark changes from 

year to year and from river to river. It highly varies between times of year as well. When there is 

very low water flow from run off and lack of precipitation, then the water will be much lower 

than the high water mark, giving a person more access to the land above a stream or river on 

private property.  

As stated above, the only restrictions to what an individual can do in a stream or river in 

Montana is purely dependent on whether or not the water permits it. The definition for 

recreational use in the Montana Constitution is “with respect to surface waters: fishing, hunting, 

swimming, floating in small craft or other flotation devices, boating in motorized craft unless 

otherwise prohibited or regulated by law, or craft propelled by oar or paddle, other water-related 

pleasure activities, and related unavoidable or incidental uses (MCA 23-2-301§10).” This is a 

broad, almost vague, definition of recreational use. It can be interpreted in many ways, but 

allows almost infinite use of streams and rivers, which is why Montana is a fishing site mecca.  

Other states have very different laws. Even states that are bordering Montana or are 

known for recreational activities, such as Colorado and Utah, have nowhere near the same 

amounts of public freedoms for their streams and rivers. There are a few main differing points 

between the other states and Montana, one of them being the streambed itself. Public citizens in 

Montana are able to access not just the streams and rivers, but also the riverbeds underneath. 
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They are able to anchor their boat, walk through the water, or anything else that is not damaging 

to the landowner’s property. Utah law states that “a person may not access or use a public water 

on private property for recreational purposes if the private property is property to which access is 

restricted, unless public recreational access is established under Section 73-29-203” (73-29-201). 

As one continues to read the rest of the Public Waters Access Act within House Bill 141 for 

Utah, it simply relays the fact that someone can only float on water unless of an emergency. A 

person on the river cannot stop on a landowner’s personal property due to the fact that the 

riverbed is still private. Colorado laws are very similar to this.  

In 1979, a few fishermen were heading downstream on the Colorado River when they 

decided to take a detour through a tributary river. This tributary flowed through a private 

property, in which multiple people, including the landowner, told the fisherman that they were 

not allowed to float through the privately owned ranch. The fishermen decided to go anyway in 

their raft, which was the right size for the river and had leg holes in the bottom to steer away 

from any objects in their way or the shore. The landowner pressed charges and the case went to 

trial. The court ruled that the men were in the wrong and were convicted of third-degree criminal 

trespassing. One of the main points for this case was a property law that became codified into 

statue 41-1-107, C.R.S. 1973, which states:  "The ownership of space above the lands and waters 

of this state is declared to be vested in the several owners of the surface beneath, subject to the 

right of flight of aircraft." This would mean that rivers and streams on private property were 

completely owned by the private landowner. They own not just the water, but the rocks at the 

bottom and the sky above. This constricts a lot of land from being enjoyed by the public, and 

gives more power to the landowners. This is vastly different to Montana, which allows all parts 

of a stream and river to be used by the general public and visitors. Figure 9 shows some 

similarities and differences between Utah, Colorado, and Montana. 

 

 Public Recreation 

Rights 

Public Easement 

On Private 

Streambeds 

Public 

Portage 

Easement Across 

Private Property 

Colorado Flotation Only No No No 
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Wyoming Flotation Only No Yes Depends 

Montana Virtually Unlimited Yes Yes County Roads 

Figure 9: A table of different aspects of stream access laws in Colorado, Wyoming, and Montana based on different 

cases and constitutions. 

 

The draw of people to Montana is the quiet wilderness and plethora of activities that can 

be enjoyed outside. One of the reasons that stream access laws are important is because of the 

freedom of recreation. Activities such as boating and fishing are very popular in the United 

States, and with Montana having such a lack of restrictions for rivers and streams, people from 

all over the country venture to this state for the opportunity to spend their time, and money, as 

they please. Fishermen are the main demographic for Montana stream public access law 

appreciation. Just with a simple online search of fishing opinions, my computer was flooded with 

rants about the stream access laws in other states. Out-of-state individuals who are willing to 

spend whole paychecks for a new fishing pole or even a boat to cruise on the river are now 

willing to spend that money in Montana. They know they have the most rights in Montana than 

any other state, even in the western part of the United States. 

The economics of recreation are massively important to Montana. For starters, Montana 

has the second highest recreational revenue for global domestic product (GDP) within the United 

States, with Hawaii taking the number one spot. Activities such as hunting, skiing, and 

motorcycling bring in more money in Montana than the national average (Figure 10). The last 

reported accruement of income from the Montana Department of Labor and Industry showed that 

recreation brought in $2.5 billion of annual gross domestic product for 2021, with a large portion 

of that coming from boating and fishing. A total of $163 million was brought in from boating 

and fishing, with part of that being from boat sales and from guided tours on Montana streams 

and rivers. 
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Figure 10: A graph from a brochure based on the total recreational GDP from the Montana Department of Labor and 

Industry written by Logan Hendrix. The graph shows a comparison between the percent of recreational income from 

the United States and Montana based on activity type. 

 

Part of this money comes from people who are coming from out of state. People not just 

from the United States, but from all over the world venture to Montana to see the national parks, 

snowy hills, and the beautiful big sky. They also come to partake in recreational activities that 

only can be done so freely in Montana. As people come to this state, they usually don’t 

understand, or particularly care, that even though there is virtually anything you can do in 

Montana’s streams and rivers, that doesn’t mean you should.  

There are over 300 fishing sites that have public access in Montana and though the 

stream access laws allow almost unlimited recreational use of these river sites, that doesn’t mean 

there are unlimited ways that an individual can fish. Fishing has changed since the beginning of 

the United States. Fishing was once for food and sustenance, providing meals for families and 

communities. Though this was beneficial at first, excessive fishing started to deplete all fish 

populations, especially trout. The fish did not have a chance to repopulate, and the economics of 

selling or trading fish also started to deplete as well. Fishery managers started to realize that if 

they put regulations onto the amounts of fish, and the weights of the fish caught, then they could 

have more fish for the next year and the year after that (Clark et al. 1981). Then as time went on, 

fishing became more recreational. Fishing started to become a leisure activity, then eventually it 

became a competitive sport. This would mean that the dynamic of fisheries would start to change 

as well. Having complete fishing freedom in streams and rivers came at a cost. Laws were 
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starting to be put into place in every state across the nation in the late 1800s that would only 

allow a certain amount of fish that could be kept and under a certain weight (Rahel 2015). 

Montana Fish, Wildlife, and Parks currently release a yearly brochure of regulations for 

each river and stream in Montana, lakes and ponds have different fishing regulations, and these 

regulations for fishing in streams and rivers vary from the amount of each species one can catch 

to the months that a fishing site is open. Regulations for river closure are a vital part of Montana 

state laws as well. “Waters operated as fish hatcheries and rearing ponds by FWP and the U.S. 

Fish & Wildlife Service shall be closed to fishing at all times. Waters in which FWP operates 

fish traps and other structures are closed to fishing as posted. Certain water-supply lakes, 

streams, and hazardous areas are also closed as posted (Montana FWP 2023).” There are also 

fishermen and fishing companies that understand the freedoms they have and want to honor them 

by creating their own code of morals to allow everyone to use the beauty that is stream access 

laws for all kinds of fishing. For an example of morals, Montana Angling Co. has a list of 

viewpoints on their website that represents their ethical code for their guides and anglers. This 

list includes catch and release, following all game laws, and no use of lead. One of their ethical 

codes is to not target spawning fish. They state: “Anglers need to avoid targeting actively 

spawning fish and redds” because they are the “future of wild trout fisheries. The rivers and 

streams of Montana depend on healthy reproductive rates to maintain the quality of our fisheries 

(Montana Angling Co. 2020).” This is an important part of education not just for anglers, but 

also someone who may not have the prior knowledge of fish populations and fisheries. Using and 

sharing an ethical code as not just a company but also as an individual could be a very 

advantageous way of spreading beneficial information from person to person. 

Both examples of a more government based approach to regulations and also an 

individual’s morals show that conserving fish populations and ecosystems is more important than 

an individual’s rights to stream access. To allow someone to fish in public streams and rivers 

there needs to actually be sufficient amounts of healthy fish to catch. When people interrupt the 

spawning fish or fisheries in general at river sites, there is a risk for negative impacts in more 

ways than one.  

Pollution is increasing in every part of the world. You see growths of green algae in lakes 

and trash piles brought from stormwater sitting on the side of the street. A lot of pollution 

currently being found in water sources is derived from microplastics, which are pieces of plastic 
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that are smaller than five millimeters. Plastics and microplastics found in the environment can 

come from a variety of sources (Liu et al. 2000). Some primary sources where microplastics are 

found are artificial turf, sewage systems, paint, personal care products, and even tires. The 

secondary sources of microplastics stem from bigger pieces of plastic that have not been properly 

disposed of. This form of pollution stems directly from humans. In the grander scale of water, 

fishing nets and ropes are used when fishing in large bodies of water, and those being left behind 

contribute to a lot of waste.  

Coming back down to the local scale of water pollution, fishing paraphernalia is still a 

large part of water pollution in Montana. With the popularity of fishing, there comes quite the 

foot traffic in popular fishing sites, and an increase of trash left behind. One study conducted by 

Environment Montana Research and Policy Center found that microplastic pollution including 

bags, water bottles, and fishing line were found in 66% of the fifty popular fishing sites analyzed 

in Montana. Of the sites where microplastic pollution was found, 42% of them had fishing lines 

present (2019). Microplastics heavily affect the fish that inhabit Montana’s public streams in 

rivers. As stated above, microplastics can absorb heavy metals and then can be ingested by 

zooplankton, fish, and other organisms that live in any bodies of water. Keeping the fish 

population healthy is important not just for the economic benefits of recreational fishing, but for 

the ecosystem as well. An unwell ecosystem hurts plants, animals, and even people.  

In conclusion, Montana is unique in a multitude of ways. There is so much freedom to 

recreate in this state, but understanding how you can recreate, without damaging the natural 

habitat, is severely important for ecosystems and organisms within an environment. Though 

stream access laws state that the recreation of an individual in a stream and river is virtually 

unlimited, other government regulations protect the fish and the environment first. That doesn’t 

stop anglers or others from spending their money to fish and boat on public access sites. Through 

all laws and regulations, humans are still a direct source of water pollution, usually putting 

plastics into popular fishing and recreation sites. The public shouldn’t have rights to do whatever 

they please in streams and rivers. Regulations are needed to keep Montana waters clean and fish 

populations intact. In the end, education is the most important tool for understanding water in 

Montana. Water is so abundant in life for organisms and memories for people. From someone’s 

first fish they’ve ever caught to just playing in a stream, water provides not just the necessary 
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fuel for life, but a fuel for living life. Making sure that people understand the proper ways to 

recreate and protect the environment is key to keeping Montana’s streams and rivers free. 
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From Water to Phosphorus: A Brief Interlude 

Santo Mallon 

 

The one thing everybody has in common is water. H2O, DiHydrogen Monoxide, is one of 

the most basic and important molecules, and generally, topic, in not just science but the universe 

in general. Whole worlds are made up of water (or rather, different forms of ice)  (Quick 

2020).The water is where life began, and even still makes up the majority of the mass in most 

life (Mitchel 1945, Watson 1980).  Wars have been fought over access to water, some of our 

greatest discoveries and most important mysteries have been based in water. NASA even 

believes it will be water that brings us to the Moon and beyond, as with enough electricity we 

can split the water-ice on the Moon into Oxygen to breathe and Hydrogen to burn for rocket fuel 

and more electricity (NASA).  

 On Earth however, water is even more precious. A vital resource that makes up ~70% of 

our surface (USGS). And I don't know about you, but personally I don't often find myself 

delving too deep into the Earth trying to find more... there is more down there, it’s just not very 

useful to us unless you are a geologist. No, instead we are stuck with what we have on the 

surface, which in fairness, is still a lot. Even once you google “how much water is there” and 

click the first (hopefully USGS) link that pops up and you learn that only 0.001% (you can add 

or remove a 0 or two, doesn’t make a difference) of all our water is freshwater in rivers and 

lakes, that’s still A LOT of water, not to mention that ALL that salt water will eventually 

evaporate, rain down, become life, return to the streams, and get salty again as it arrives in the 

ocean. Part of a natural cycle, one all life on Earth is ultimately bound by. A cycle itself bound 

by a plethora of other cycles and if I remember there will be an endnote here mostly made up of 

“things you should google for fun” [4]. Basically, all these cycles have a lot to do with each 

other, no one exists in a vacuum, though some are a bit more independent than others, and some 

are certainly a lot more interesting than others. But it’s not like the idea of “some things are cool 

and some aren’t” is new to anyone, after all, none of the authors of this paper chose to be 

environmental scientists because we thought that “plants are boring”. If anything, the opposite is 

true, we are here because the Environmental Sciences embodies many of our favorite things. 

If you’ve ever spent 10 minutes with an 8-year-old kid, you’ve probably been asked 

about your favorite Dinosaur. Brontosaurus is my answer. “Why” you ask? Thunder-Lizard! You 
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might not have a favorite Dinosaur, although I would hope to be wrong, but you probably have 

lots of other favorite things. Favorite cookie, drink, flag, color, favorite kid. All reasonable things 

to have favorites of, right? But what about your favorite element? Most people who aren't either 

nerdy 8-year-olds or scientists don't really think about “The Elements” in an abstract way often. 

But I do, and when you ask me my favorite element, Boron, naturally, is the answer. I could go 

on for ages about the spectacle that is Boron. An element most people have probably never heard 

of, or consider ‘boring’ simply based on the similarity between the two words. But let me talk 

about some of the marvels of Boron, about how the modern kitchen & science are built on its use 

in heat-resistant glass [5], how Boron-Nitride is basically a better version of diamond [6], the 

fact that fireworks are green because of it, how the Borax in your washroom that gave us Death 

Valley National Park is the same stuff you used to make Flubber in 3rd grade, and of course, the 

fact that a lack of Boron is the most common micronutrient deficiency in plants. Now that 

you’ve let me stand on my 20 Mule Team soapbox [7], let me elaborate on that last point, and a 

broader idea in general. Why should we even care about the “elements” and especially, any 

individual element? And what can those elements teach us about our place in the universe?  

 Probably unsurprisingly, the answer to that is basically everything. Boron, as cool as it is 

however, does not have as many pressing questions to ask nor vital answers as some of its 

nearest neighbors on the Periodic Table. If we go but one to the right we meet our good friend 

Carbon. Carbon is the vast majority of life, or at least it would be if we ignored water (Freitas 

1998). Nearly every single molecule in our body consists of several Carbon bonded together in 

what chemists pretend are long squiggly lines(a footnote about Lewis dot structures, just so that 

“squiggly lines'' makes sense, ‘cause, it's really a visual thing). The same amazing properties that 

let Carbon take the form of diamonds and graphite also allow us to create fat, muscle, DNA, and 

so much more. It's this amazing bonding ability that leads Carbon to create complex 

combinations with Oxygen, Nitrogen, Hydrogen, Sulphur, Calcium, Phosphorus. As we move 

further to the right, we increase in the violent reactivity of the elements, and yet they remain vital 

for life. Nitrogen, with its unique attributes forms another backbone of life. Most molecules 

necessary to life work, ultimately, because of Nitrogen in what we call ‘Amino Acids’. Next to 

Nitrogen is an element that needs no introduction, Oxygen. Including water, Oxygen is by mass 

the majority of the human body, and most all living things. Oxygen is 30% of all the mass of the 

Earth, second only to Iron (at barely more, 32%). Whether you're eating a salad or a hamburger, 
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on a hike in the woods or looking at rocks, the majority of what you're touching is, almost 

always, Oxygen. Aluminum makes our soda cans and airplanes. Silicon (with Oxygen) is the 

backbone of most rocks. Sulphur displeases us and warns us of dangers, be them in food or the 

air around us. And Chlorine is one of our most useful tools for cleaning the world around us, 

from our countertops to pools, and even some more nefarious uses (NLM).  

 

 

Figure 1. A “wide” view of a Periodic Table. Usually the Lanthanides and Actinides (Brown and wine-red) are 

below to save space, rather than this more accurate depiction. Most of our story is in the upper right. The S block 

consists of the far left (and Helium), the P block consists of the Blue-Cyan-Green and Purple guys, D is the Red and 

F is the Brown and win-red (see footnote 6.1).  

 

  

Figure 1.1 A more zoomed in view of the rather small area of the Periodic Table we actually care about. The number 

in the top left of each cell is the “Atomic Number” or another way, how many protons it has. The Number in the 

bottom left of each cell is the “Atomic Mass” of the element in units Im pretending not to care about. The blueish 

purple numbers at the top are the column they appear in, and are important for a long winded conversation found in 

footnote [9.1]. No, I do not know how to pronounce Pnictogens.  

 

 But there is one more important element that most people tend to forget about, if most 

people even know about it. A name we hear less, not because it's so drastically uncommon or 

useless, but simply because it's less glamorous. One beneath Nitrogen is an element that shares 
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many of the same attributes, but generally more extreme. A greater ability to form bonds but 

with the same patterns, larger, more violent, and harder to spell. Phosphorous. Deoxyribonucleic 

acid, DNA, the basic code for all life [8] only works because the active groups are held together 

by Phosphorus. Phosphorus plays a lot more roles than just keeping the code of life together. 

ATP, the basic energy source for functionally all life is also based in Phosphorus, quite literally 

that's what the P means [9]. There are other uses in life for Phosphorus, many, but it's these two, 

ATP and DNA that make it so necessary. If we do some simple math and assume the average 

human is ~50% water (more realistic than the 75% we were all told in 3rd grade) then 

Phosphorus makes up roughly 2% of our dry body mass. That is to say, 2% of the 50% that isn't 

water. Maybe that's not very impressive to you, but considering that makes it the 6th most 

abundant, both by mass and number of atoms, I’d say that's pretty impressive. If I got at least 6th 

place in most competitions I competed in I’d probably be doing something much more fun with 

my life than writing a paper for Capstone. And that's really just a tiny bit about Phosphorus in 

Humans, there's plenty more that could, and will, be talked about later by other authors, but for 

now let's worry about Phosphorus on a grander scale. 

To start the Phosphorus cycle I'm gonna lean into the major I should have gone down, 

and start with what might seem a bit odd of a springboard; Geology. Phosphorus can be found in 

a plethora of minerals, almost always as the negatively charged molecule [10] Phosphate (PO4)
-  

[11]. Many minerals contain Phosphate, but very few different families of minerals contain an 

appreciable amount of it, and the vast majority of minerals that do are often considered 

‘Apatites’ or at least, Apatite adjacent (Mindat). Just as Similar to how rats and mice are very 

similar, but still different, yet if we need to talk about them together it’s easy, we just call them 

rodents. This is the same with minerals, nearly all minerals with an important amount of 

Phosphate can be called some version of Apatite [12]. Now that I’ve made lots of mineralogists 

upset [13], it's time to actually introduce the Apatites. Important for us are three varieties that 

will come up again later: Hydroxyl-, Fluor- (pronounced Floor) and Chlorapatite, the difference 

between them being whether they have a Hydroxyl ion (OH)-, a Fluorine ion F-, or a Chlorine ion 

Cl-. You’ve maybe even heard the word Hydroxyapatite before, likely in a dentist’s office, and if 

you see where I'm going with this, yes, your teeth and bones are both mostly made of 

Hydroxyapatite, and the reason we brush our teeth with Fluoride is to replace the OH with an F, 

making our teeth stronger (NLM). When I was a young Geology student in Mineralogy class, I 
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was told that if I remember nothing else, it should be that fun fact, and now I pass it on to you. 

So what do our teeth have to do with rocks? Well, a lot actually, but we’ll focus less on the teeth 

part, and more on the microorganisms part, which yes, still aren't rocks... yet. Phosphorus-rich 

microorganisms in the ocean die one way or another, maybe they get eaten by a shrimp, which 

then poops them out, or gets eaten by a fish and so on, until eventually, somehow the Phosphorus 

rich organism somehow finds its way to the seafloor, where it stays for millions of years. 

Generally this is happening pretty close to shore, not nearly as much in the open ocean. After 

millions of years and lots of changes to the planet, namely from our beloved plate tectonics, the 

Phosphorus that's been deposited on the floor gets smooshed together, and often reacts with 

ground water to form Phosphate and eventually forms one of the three varieties mentioned 

above–Fluorapatite from hydrothermal vents, the other two more directly from the organisms 

themselves. Another few million years may go by and the tiny amounts of Apatite get 

concentrated in a few bands, some only a few cubic centimeters, some much more massive. 

These are rarely gem quality apatites; those come from Metamorphic rocks and are even rarer, 

but they are very important for other reasons [14]. Sometimes these Phosphorus-rich rocks 

eventually find their way out of the sea and onto land, and once on land can be eroded away, thus 

the Phosphates flow into the streams and rivers, the sediment they are a part of getting deposited 

across the landscape by floods, picked up by plants, eaten by animals, pooped out, taken back up 

by plants, so on so forth and thus it may get carried from a pile of rocks in Morocco [14] to a 

Zebras carcass in Kenya. Eventually it might return to the sea, to a little plankton, and thus the 

cycle, ultimately bound by the slow march of geology, continues anew.  

 At some point, or even a couple different points in this cycle, we humans mine the 

Phosphorus in one of two forms, either as the masses of Apatite from the Sedimentary rocks, or 

sometimes so much poop gets massed in one spot that they quite literally create guano deposits, 

usually in tropical and subtropical islands without substantial rain (Akiboh). We already know 

how important and how limiting Phosphorus can be, so when our gardens are looking a bit short 

on that oh so vital element, why not go straight to the largest reservoirs of it? That same 

Phosphorus that once went from plankton to fish to birds to poop, now gets put into bags of 

fertilizer and shipped all over the world, often at great detriment to where it came from. After all, 

ripping up the ground and shipping it across the world doesn't sound too good no matter where in 

the world it was ripped up from. Nonetheless, this process of exporting Phosphorus feeds huge 
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swaths of the world. And if whatever is grown off that fertilizer ends up getting exported too, 

there goes that Phosphorus, continuously traveling around the world, getting caught in a plethora 

of tiny loops and cycles, many of which are quite bad.  

 But let’s go back to water for a moment. Phosphorus as a tiny little speck of fertilizer is, 

for simplicity, a tiny rock. Rocks are famous for doing something called weathering, and even if 

that fertilizer is in the soil, soils love to do something we call eroding. Weathering and eroding 

are... not very different, for us here at least. Either way, Phosphorus doesn’t usually have too 

much trouble making its way to the sea or a lake or wherever (USGS). Large wet events, say a 

massive storm, can help this process along by adding lots of runoff to pick up lots of this 

Phosphorus rich dirt. Then, once in the body of water, a shortage of water might help increase 

the concentration of Phosphorus, since water can escape in one way Phosphorus can’t, 

evaporation. More Phosphorus in an area means more growth and now if the conditions are right, 

we have just created a massive algae bloom and, here's a $5 word, caused what we call 

‘eutrophication’(USGS). 

 Ever heard of a red tide? Or the Gulf of Mexico Dead Zone? Or seen photos of goopy 

green Lake Erie, or even a local smelly nasty pond near where you live that didn't used to be so 

gross when you were a kid? All of that is some sort of Eutrophication event. Occasionally 

natural, and not always caused by Phosphorus, sometimes other nutrients are the limiting factor, 

often if it’s not Phosphorus, it's probably the lighter brother, Nitrogen, which is also applied 

readily as a fertilizer on farms (USGS). See how it’s all connected?  

Ok, time to stop burying the lede. The next segment of this paper is about those 

Phosphorus additions and usage on a farm and shows us how tracking that Phosphorus and 

drawing conclusions is not always so easy with something as sneaky as soils, as well as the 

implications that Phosphorus has, both on the farm, and once its lost.  
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Phosphorus in Montana: Analysis of Phosphorus Accumulation in an 

Agroecosystem  

Jack Allen, Richard Baumgarten, Jack Swanson 

Introduction 

Phosphorus is an extremely important resource to all living organisms. This essential 

nutrient is required by all known forms of life, meeting the common need between all organisms 

to form the phosphodiester backbone of DNA. The leading human use for P is in fertilizer, 

linking this nutrient to global food security. Unlike other main fertilizer components, nitrogen, P 

does not involve the atmosphere in its biogeochemical cycle. To meet these fertilizer needs, 

phosphate rock is extracted from the earth by large scale mining operations. P reserves are not 

unlimited and predicted peak extraction will be reached in 2033 (Cordell et al. 2009). Unlike 

renewable energy generation and the Haber process for nitrogen fixation, P has no viable 

alternative. This extraction has the potential to bring major geopolitical issues in the future, 

because of the disproportionate concentration of P reserves located in Morocco (Elser et al. 2011, 

Vaccari et al. 2009). Food is essential for all human life, making P fertilizer directly linked to 

survival.  

The impending shortages and necessity of P for food production, highlight the 

importance of understanding the P balance on agricultural lands. To assess whether P 

concentrations are accumulating or decreasing in soil from fertilizer additions, requires a holistic 

approach, which relies on both biogeochemistry knowledge, and informed management 

practices. The benefits of creating a P budget, whether it be for profitable crop production or to 

decrease P pollution into waterways, requires the attention of new minds. Due to concerns for 

future food security, now more so than ever, it's important to analyze how the possible 

accumulation or loss of P can provide helpful insights. Leading to the sustainable management 

for agroecosystems. By looking at data to address P inputs and outputs on a single farm, we can 

mathematically create a budget. If the change in P is positive, it will indicate that P has been 

accumulating in the system. Between the essential nature of P to all life and peak P extraction 

quickly approaching, it is imperative for farmers to manage their phosphorus in all aspects. 

Understanding biogeochemistry is essential to learn from this P issue. Due to the lack of 

an atmospheric phase, the phosphorus cycle is less complex when compared to nitrogen and 
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carbon in terms of movement. P resides in soil, stored as both organic and inorganic compounds. 

P generally has low mobility in soil, moving by diffusion of soluble P compounds through soil or 

by deposition of dust and erosion of soil particles (Metson et al. 2012).  

Non-anthropogenic sources of P come from a few main processes, like the dissolution of 

apatite (phosphate rock) caused by mechanical weathering and mineralization of organic P from 

decomposition of organic matter. Anthropogenic P comes mainly from the physical mining of 

apatite and is turned into fertilizer that is applied to the soil as P pentoxide (P2O5). Historically, 

many organic sources like bones and guano were used to fertilize agricultural fields (Egan et al. 

2023). The soils in northern Montana mountains surrounding and in Glacier National Park are 

associated with calcareous parent material (Bamberg et al. 1968). The relevance of calcareous 

soils could contribute to P accumulation through sorption and precipitation. In calcareous soils, 

the Olsen P test is used to quantitatively characterize phosphorus. The chemical absorption of P 

to metal ions present in the soil is one factor that dictates P movement and availability (Elser et 

al. 2020). Creating a P budget will enable these processes to be addressed through calculations.  

To understand this P balance, a family-owned farm in northern Montana agreed to 

provide data. The farm, located in Toole County, is situated just south of the Canadian border 

and east of the town of Sunburst (Figures 1 and 2). Toole county receives between 6 to 20 inches 

of precipitation per year with southern Toole County receiving significantly less rain than 
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northern Toole County (Figure 3). The large difference in precipitation causes a variety of 

different agricultural practices to be used between northern and southern Toole.  

The Nagy farm is roughly 7,000 acres and grows barley, though many different crops are 

rotated with barley. The crops grown throughout the provided data include barley, lentils, 

chickpeas, canola, and spring wheat. No fields are left fallow and are continuously cropped. 

Continuous cropping and reduced till have been used steadily over the past 15 years and have a 

great impact on organic matter incorporation into the soil. According to Don Nagy, the historical 

owner and operator of the farm, continuous cropping and reduced till account for the majority of 

decreased soil loss due to wind erosion, and increased organic matter incorporation into the soil. 

In fact, the wind in Toole County is so powerful, that the Glacier Wind Farm, constructed and 

operated by NaturEner USA in 2009, became Montana’s largest wind energy project at the time, 

with 100 of the 140 towers located within Toole County (About Toole County, 

toolecountymt.gov). Seeing how most soil P is unavailable to plants, and is chemically bound to 

soil surfaces, wind erosion may have driven a large loss of P until continuous cropping and 

reduced till were in effect. 

As soil organic matter increases from continuous cropping and reduced till, so does plant 

available soil P. This increase mainly occurs through mineralization or by competition with 

phosphates adsorbed to soil surfaces. Organic matter competes with phosphates by producing 
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protons associated with organic acids that change the pH environment thereby reducing P 

retention in the soil. This is the same mechanism by which plant symbiosis with arbuscular 

mycorrhizal fungi is used to increase P uptake (Klugh and Cumming 2007, Klugh-Stewart and 

Cumming 2009).  

Another benefit to these practices is the reduction of saline seep on the land. Saline seep 

occurs when water percolates through the soil dissolving and picking up salts along the way. If 

this water then resurfaces at a lower point in the watershed it can leave behind salt on the soil 

surface.  This salt is identified as saline seep and can greatly reduce soil fertility. These salts 

originate from the lithology in Toole County which mainly consists of marine deposits rich in 

salts. Continuous cropping is a particularly effective method by which to reduce saline seeps. By 

having more living plants in the soil year-round, less water percolates below the root zone 

thereby decreasing saline seep.  

Soils in Toole County are generally silty clay loams with 2% organic matter (Toole 

County NRCS 2019). Soils at the Nagy farm fit this classification and feature calcareous Bk 

horizons (NRCS Web Soil Survey). These Bk horizons indicate the buildup of carbonates which 

originate from the calcium-carbonate-rich marine deposits. In calcareous soils, P retention and 

immobilization take place due to aforesaid precipitation and adsorption with carbonates in the Bk 

horizons. While these soils may be prone to saline seep and are highly erodible due to wind, 

management practice by the Nagy farm overcomes these problems. Understanding how P is 

accumulating or diminishing within this system will provide useful insights into phosphorus 

cycling and its movement in the soil.               

 

Methods 

         To evaluate the accumulation or loss of P on the Nagy Farm, finding the overall delta P 

per year is needed. Don Nagy's personal records contained fertilizer rates, crop yields, as well as 

soil samples. By subtracting the amount of P the crops stored in the yields from the P added by 

fertilizer, delta P can be calculated. The soil tests are conducted by AGVISE Laboratories 

through the collection of multiple soil cores per field. The cores are collected to a depth of 24 

inches and then averaged so that each nutrient has one value for each tract. These soil tests are 

used to evaluate soil nutrients, one of the nutrients being P through an Olsen P test which shows 

the plant available P present in the soil. Comparing Olsen P and delta P year over year allows for 
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the observation of the relationship between available P and delta P in the soil. P2O5 is used in our 

calculations because it is the form of P found in fertilizers and crops. Due to inconsistent testing 

of the soils, Olsen P is unavailable across all five years for certain tracts, therefore, only tracts 

with three or more soil samples over the five years were used. Once the calculations were 

completed, Excel was used to visualize the relationship between Olsen P and delta P (ppm).    

Calculations:   

Calculating the weight of P2O5 added from fertilizer per acre was completed by multiplying the 

ratio of P2O5 by the weight of fertilizer added (Eq. 1). 

 Fertilizer Ratio * Weight of Fertilizer (lbs) = P2O5 applied (lbs).  

Once the weight of P2O5 was calculated it was multiplied by the percent mass of P in P2O5 

(0.4364 %) to find the weight of P applied per acre (Eq. 2). 

P2O5  applied (lbs) * Percent P in P2O5  (0.44) = P added (lbs) 

 The weight of P applied per acre could then be converted to parts per million (ppm) through a 

conversion factor of 0.5.  The same process was applied to calculate weight of P removed by 

plant uptake; the yield per crop was multiplied by the crop’s percent P2O5 and subsequently by 

percent phosphorus (Eq. 3). Crop percent P2O5 can be seen in Table 1.   

Total bushels per acre * Percent P in each bushel  = P removed (lbs) 

Finally, the change in phosphorus was calculated by subtracting phosphorus outputs from inputs, 

then multiplying by 0.5 to get ppm (Eq. 4).  

P added - P removed = ΔP * 0.5 = ΔP ppm 

 

Results 

 Over the 5 year time frame 69.7 tons of P were added while 90.5 tons of P were removed 

across the 7000 acre farm. This is equal to 21.94 pounds per acre were added while 28.50 pounds 
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per acre were removed across the farm, which is a loss of 6.56 pounds an acre for the five years 

or a removal of 1.31 pounds an acre each year. 

 

Figure 4: Change in Olsen P per year over 5 years 

 Figure 4 shows Olsen P (y-axis) over the 5 years (x-axis) separated by tract. For the 

majority of tracts, Olsen P did not change greatly when looking over all years. Tracts 6395 and 

346 were the only tracts which experienced a noticeable decrease in Olsen P. Although the 

majority of tracts showed no increase or decrease over 5 years, there is noticeable change 

between years. For example, Olsen P in tract 6821 between 2019 and 2020 dropped more than 5 

ppm. Tract 6821 also has two data points for the year 2022 due to there having been two separate 

soil tests for that tract. The heterogeneous nature of soils shows the difficulty of accurately 

finding the nutrient levels in tracts of this scale. 
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Figure 5: Overall change in Phosphorus vs Olsen P for all tracks and crops.  

Figure 5 depicts the relationship between Olsen P and ΔP by crop where the x-axis 

represents change in P in ppm and the y-axis is Olsen P in ppm. Olsen P represents available P in 

the soil which is only a fraction of the total soil P.  For chickpeas, lentils, and canola available P 

increases when you remove more than is applied. The trend is opposite for barley.  Barley’s 

trendline shows a positive slope, indicating that as change in P becomes positive, the plant 

available P increases as well. The R value for Barley is 0.55 which indicates that there is a strong 

positive correlation between change in P and Olsen P, whereas the canola, chickpeas, and lentils 

all share the same R value of -0.22. An R value of -0.22 shows poor negative correlation between 

change in P and Olsen P. The fact that Olsen P is lower when harvests are large, is supported by 

similar findings across Montana soils, with 20 years of fertilization and cropping data (Jones et 

al. 2002)  

 

 

Figure 6: Overall Change in Phosphorus vs Olsen P by Tract 

Figure 6 is another iteration of the figure 3 but is separated by tract. All tracts, except for 

tract 263, demonstrate a positive relationship between Olsen P and delta P. Tract 373 shows the 

strongest correlation with an R value of 0.89 and the tract with the weakest correlation is tract 

6395 with a R value of 0.15.  This shows that for some tracts a change in P affects Olsen P while 

for others the change in P has little effect on Olsen P.  The rest of the tracts vary between R 

values of 0.56 and 0.32 that show moderately strong to moderately weak correlations.  Tract 263 

is the only tract with a negative correlation.  
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Discussion  

Now let's discuss the exciting possibilities of what is happening to the P in this budget. 

The data collected from Don's farm was used for comparison of phosphorus inputs and outputs, 

to plant available P. Based on Figure 2, P is not accumulating in the soil due to fertilizer 

additions, meaning on average fields are losing phosphorus. Reduced till and continuous 

cropping practices are not adding the extra phosphorus observed in the budget but could be 

involved. These practices have the ability to contribute to the remobilization of built-up P that 

was chemically tied up in the soil. In terms of sustainable farming in an agroecosystem and the 

world's P extraction, this is beneficial.  

In Montana, although soils are highly erodible soils and are calcareous in nature, they are 

generally not P deficient, but the P is not plant available. P already present in the soil, will slowly 

sorb to bicarbonate, chlorine, ammonium, and goethite by ion exchange which can decrease 

available P (Delgado et al. 2000). The reincorporation and buildup of organic matter through 

reduced till and continuous cropping can produce acids that aid in the desorption of phosphates 

from calcium carbonate (HCO3). The same organic matter also competes with sorbed 

phosphorus, decreasing phosphorus retention to soil surfaces. Releasing P bound to the soil 

makes it available for uptake by plants or microbes.  

Biogeochemistry combined with the calculated change in P, lead to the prediction that P 

already present in the soil is being accessed and alleviating the difference between inputs and 

outputs. The fluctuations observed in Olsen P, but overall minimal net change support the fact 

that plant available P is not changing due to the change in P.  In addition to P fertilizer, nitrogen 

is also being applied on the farm. A result of nitrogen fertilization in agriculture is soil 

acidification. Due to the calcareous aspect and basic pH, the soils present in this region of 

Montana, calcium bound P becomes more available as the pH approaches neutral. Another 

reason for the increase in plant available P is the crop rotation between barley, canola, and 

chickpeas/lentils. The roots of these legumes could have the ability to release anions, acids and 

enzymes like ATPase and acid phosphatase that are capable of chemically interacting in the 

rhizosphere of soil to free up plant unavailable P (Vance et al. 2003).  

The ability to draw conclusions from this study on P present in the soil was limited by the 

data and testing. The soil tests only consisted of one soil test per field, introducing possible room 
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for inaccuracy. To improve the study for the future, soil test quantity per field should increase to 

accurately characterize the soil. This is especially important when looking at such a large scale 

and heterogeneous area. Information obtained from the soil tests posed limitations in terms of 

understanding total P in the soil as Olsen P was the only test obtained. Therefore, our ability to 

analyze the fate of soil P was limited to characterizing what is happening to the plant available P.  

Looking to the future of both P and agriculture practices on the Nagy farm, there is one major 

concern. P mining is only feasible for so long, eventually the P present in the soil will be 

depleted. In response, fertilizer additions must increase to make ends meet. This problem will 

only be exacerbated by population growth stressing food security.  

 

Conclusion  

         The goal of this study was to gain a deeper understanding of phosphorus in the 

environment. This was achieved by analyzing the inputs and outputs of P in a northern Montana 

agroecosystem. As fertilizer is applied and crops are harvested, P pools in the soil fluctuate. 

These fluctuations show that plant available P remain the same over time while other forms of P 

in the ground are slowly shrinking to compensate for that which is removed through the crops. 

Overall, educated agricultural practices over the past 15 years have likely limited the waste of 

phosphorus on this northern Montana farm. Informed agricultural practices are beneficial for 

resource pollution and pollution reduction.   
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From Toole County to The World 

Santo Mallon 

There’s lots of places around the world that are short on Phosphorus, but there's one place 

in particular that is famous for its lack of Phosphorus, just in a more abstract way. The harsh and 

difficult reality created by a lack of Phosphorus is not unique in the Sunburnt Land, where every 

animal seems to want to kill you, and the most famous export is a man named Steve Irwin. I am 

of course talking about The Land Down Under, otherwise known as Australia. And the stories 

this ancient continent can teach us about Phosphorus, its limitations, and how it impacts the 

people who live on its soil are important to our broader understanding of what it means to be 

sustainable, and how we might be able to solve some of our biggest challenges, not just with 

Phosphorus, but other pollutants, and even some humanitarian problems as well.  
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Phosphorus: The Broken Loop 

Bryce Pease, Sophia Moreno, Rebecca Pyles 

Introduction 

Globally available phosphorus resources are being exhausted rapidly while 

simultaneously, excess phosphorus is causing eutrophication of freshwater bodies across every 

continent. Mined phosphorus fertilizers underpin food security and are heavily relied upon to 

support the burgeoning human population. Preceding contemporary methods for phosphate rock 

extraction is a long history of humanity seizing every last substantial source of natural 

phosphorus, from bones to bird guano, and finally to the current source: phosphate rock deposits.  
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Plants, People, and Phosphorus:   

What We Can Learn from Australia’s Banksia 

Bryce Pease 

Australian Beginnings 

With the American Declaration of Independence in 1776, England had a problem; after 

years of shipping convicts–mostly small debtors and petty thieves–to the American colonies to 

relieve English prisons, there was now no colony to take them (Gonner 1888). And prisons were 

filling up, fast. The English decided to start a new colony for their convicts on the newly claimed 

southeastern coast of Australia. In 1788, a fleet of ten English ships arrived at Botany Bay in 

New South Wales carrying 850 convicts and the soldiers to guard them. The land they 

encountered beyond the blue water and beaches was a mixture of open forest and woody 

scrubland marked by a blisteringly hot climate and inhabited by unfamiliar plants. After months 

of disease, death, and food rationing on their ships, the land was not what they had expected 

from prior reports. 

Ten years before, Captain James Cook had led the first European exploratory voyage 

along the Australian coast. The Endeavor’s crew spent eight days in the fall of 1770 exploring 

Botany Bay, gathering supplies, and unsuccessfully trying to make contact with the people living 

there. The ship’s naturalist, Daniel Solander, and fellow naturalist and benefactor, Joseph Banks, 

collected and described 132 new plant species which led to Cook naming the area Botany Bay 

(Cook 1893, Benson and Eldershaw 2007). Cook made multiple trips inland with Solander, 

Banks, and others, where he described a flat, barren landscape broken only by bogs and marshes 

where streams ran down to the bay. The soil was a light white sand supporting bunchgrasses, 

shrubs, eucalyptus, palms, and mangroves (Cook 1893). Cook also noted “in many places a deep 

black soil” in meadows which he thought were capable of agriculture (Cook 1893). A few years 

after the Endeavor’s return to England, Joseph Banks was called to Parliament to speak on 

Botany Bay’s fitness for colonization. Banks successfully advocated for Botany Bay as the site 

for the new penal colony over west Africa, describing a favorable soil and climate “where a 

colony would readily become self-supporting” (Gonner 1888). 

However, when the English colonists arrived in the bay in 1788, they found the area 

inhospitable. One of the Englishmen on board remarked, “The fine meadows talked of in Captain 
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Cook’s voyage I could never see, though I took some pains to find them out” (King 1982, as 

cited in Benson and Eldershaw 2007). Banks likely over-exaggerated the fertility of the land at 

Botany Bay, which both he and Cook described in their journals as sandy, in his eagerness to 

establish it as a colony site (Benson and Eldershaw 2007). Most of the dark, fertile soil Cook 

found on the Endeavor trip was in deep marshes and draining them for agriculture would have 

taken too much time and labor (Benson and Eldershaw 2007). The English decided instead to sail 

north to Port Jackson Bay, where Sydney is today, and began clearing trees and rocks for 

planting wheat, oats, potatoes, cabbages, turnips, and other European staples (Newling 2021). 

What followed there were years of famine called “the hungry years” as the colonists 

struggled to adapt to a new land with old agricultural techniques and with a labor force of 

convicts and soldiers poorly prepared–and motivated–to be farmers (Davey et al. 1945). Seeds 

that hadn’t rotted on the voyage did so in the ground (Newling 2021). The weather oscillated 

between extreme rain and drought (Damodaran et al. 2018). The convicts were “pale with 

disease and wasted with famine” (Tench 1795) and, as unwilling settlers, viewed farm work 

more as a punishment than as an opportunity to build a new life (Davey et al. 1945). A food 

supply ship from England sinking while en route to the colony further reduced settlers’ weekly 

rations (Newling 2021). 

In addition to the main government farm, all colonists were encouraged to establish 

personal gardens to help feed themselves. However, as one of the colonists complained, “nothing 

seems to flourish vigorously long… [crops] shoot up suddenly after being put in the Ground, 

look green & luxuriant for a little Time, blossom early, fructify slowly & weakly, and ripen 

before they come to their proper Size. Indeed, many of the Plants wither long ere they arrive at 

these Periods of Growth” (Newling 2021). Many resorted to sneaking into gardens and fields at 

night to steal food (Tench 1795). The poor crop growth was blamed on the infertile soil, and the 

government farm was abandoned for the more successful and further-inland Rose Hill Farm just 

two years after landfall (Newling 2021). 

The Australian soils the colonists were trying to cultivate were incredibly nutrient-poor, 

and low in one nutrient in particular: phosphorus (Viscarra Rossel and Bui 2016). Phosphorus is 

one of the two most important plant nutrients, the other being nitrogen. In natural ecosystems it 

originates from one source: the chemical weathering of rocks. Rocks close to the surface break 

down and release phosphorus slowly over time, and when phosphorus is washed into streams and 
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eventually the ocean by rain, it can only be replaced by more chemical weathering of rocks, or 

by small amounts of phosphorus blown into the area as dust (Vitousek et al. 2010). As soils age 

without renewal, phosphorus is inevitably depleted from the exposed rock surfaces and the 

nutrient becomes increasingly scarce (Vitousek et al. 2010). Australia has the oldest soil of any 

continent, and therefore some of the most phosphorus-poor on the planet. Unlike other continents 

that formed at the same time, little of the Australian crust that split off of the supercontinent 

Gondwana 100 million years ago has been disturbed by volcanic activity, formation of mountain 

ranges, or glacial scraping of soil to expose new rock, providing few new sources of phosphorus 

(Huston et al. 2012). Only the southeast coast of Australia where the settlers landed has young 

mountains, a history of glaciation, and some of the most fertile land on the continent (Colhoun & 

Barrows 2011, Viscarra Rossel and Bui 2016). 

Indeed, the settlers soon found their feet and produced some of their first successful crops 

at Rose Hill Farm in 1791 (Newling 2021). Still, the years of starvation became ingrained in the 

Australian ethos. One historian concluded that the first five years of famine the settlers faced on 

their new continent led to an attitude of viewing the land as an enemy which had to be subdued, 

“from whom a living must be wrung with sweat and tears” (Davey et al. 1945). Moving into the 

1800s, Australians found that they continued to need supplements not of food, but of fertilizer, to 

survive. 

 

Phosphorus Adaptations 

As the Australian colonizers struggled to grow European crops on their new continent, 

they had a lot to learn from the original colonizers of the land–not just from the Aboriginal 

people of Australia who arrived 50,000 years prior and whom the colonizers scorned “as people 

who ‘barely existed’ on [the] hostile soil,” but from the native plants that had adapted to 

phosphorus-poor soils over hundreds of millions of years (Davey et al. 1945). In fact, the 

infertile and sandy scrubland that the English had left behind at Botany Bay was dominated by 

Banksia trees belonging to one of the most phosphorus-adapted plant families in the world. 

The plant family Proteaceae is distributed throughout the southern hemisphere but most 

abundantly in Australia and southern Africa (“Proteaceae” 2020). The family is named after the 

Greek god Proteus, who could shift form, appropriate for the incredibly diverse shrubs, trees, and 

forbs that span 80 genera and almost 2,000 species (“Proteaceae” 2020). The Banksia trees of 
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Botany Bay are one of the most emblematic members of Proteaceae in Australia. They have 

thick, waxy, evergreen “sclerophyll” leaves, and their vivid, yellow-to-orange, tubular flowers 

are distinctive for being densely packed in large compound cones, similar to the sunflowers or 

coneflowers of North America. 

Proteaceae members can thrive with phosphorus levels ten times lower than optimal, such 

a small amount that other plants go into phosphorus starvation (Lambers et al. 2015). Banksia are 

so well-adapted to this nutritional deficit that they have lost the ability to slow or regulate their 

phosphorus uptake. Even small amounts of added phosphorus in fertilizer can be deadly, with 

phosphorus building up in leaf cells in such high concentrations that it acts as a toxin [17] 

(Hawkins et al. 2008). On the other hand, Banksia are extremely efficient with the limited 

phosphorus they do have. Members of Proteaceae like Banksia and harsh hakea (Hakea 

prostrata) have the lowest recorded leaf concentrations of phosphorus in the world (Lambers et 

al. 2015). Within plants, phosphorus is used primarily in ATP molecules that help cells generate 

energy, phospholipids that make up cell membranes, and rRNA in ribosomes that build the 

proteins needed for new stems and leaves (Veneklaas et al. 2012). There isn’t one adaptation that 

allows these plants to succeed so spectacularly, but instead an entire physiology and 

physiognomy built to efficiently extract phosphorus, to carefully reuse what they have, and to 

reduce what they need in the first place. 

First, Banksia have to extract phosphorus from the soil, not all of which is plant available. 

Specialized proteoid roots help. Proteoid roots look like shaggy, overgrown pipe cleaners, with 

thousands of tiny rootlets and root hairs clustered around the roots to form a thick fuzz. Unlike 

nitrogen, which is very mobile and travels to roots, phosphorus stays in place; most phosphorus 

in soil is tightly chemically bound, or “sorbed,” to the soil’s smallest clay and silt particles–up to 

50% of the phosphorus farmers apply to their fields is locked up this way (Hasan et al. 2016). 

The rootlets act to physically seek out phosphorus in the smallest cracks between soil particles 

and to release phosphorus from soil surfaces by exuding concentrated bursts of chemicals called 

carboxylates and phosphatases (Lambers et al. 2015). All plant roots release exudates, but the 

increased surface area of the Proteoid root hairs and the concentrated burst of chemicals in a 

small area make them much more effective at phosphorus uptake (Dinkelaker et al. 1995). 

rRNA makes up 30% of the phosphorus in plant leaves. There is both cytosolic rRNA, 

found free-floating in plant cells which help the plant grow, and plastid rRNA, found in 
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chloroplasts which give plants their green color and help them photosynthesize (Lambers et al. 

2015). Normally, when plants experience phosphorus starvation, they will strip phosphorus from 

mature leaves to maintain high levels of rRNA in new leaves, killing the old leaves in the process 

(Lambers et al. 2015). Instead, Banksia uses an adaptation known as delayed greening. Banksia 

leaves grow red instead of green, normally a sign of phosphorus starvation, because they don’t 

invest any phosphorus in creating chloroplasts until the leaf is mature. As the leaves reach 

maturity, the plant pulls the phosphorus from cytosolic rRNA and puts it into building 

chloroplasts. The leaf turns green and starts producing food for the plant. The plant reduces how 

much phosphorus it needs at any point by splitting its use of phosphorus temporally. Even during 

“delayed greening” Banksia has low levels of cytosolic rRNA compared to other plants, 

constraining how fast the leaf can grow. In the long run, delayed photosynthesis and slowed 

growth aren’t detrimental to Banksia because it allows them to create a niche in low-phosphorus 

conditions where other plants can’t survive. 

Other than delayed greening, there is in general much less protein–which requires 

phosphorus–in Banksia leaves (Lambers et al. 2015). Banksia replaces the phosphorus-rich 

phospholipids making up its cell membranes with similar compounds made with sulfur and 

sugar, called sulpholipids and galactolipids (Lambers et al. 2015). Their leaves live for much 

longer, reducing the amount of phosphorus needed to grow new leaves and the loss of 

phosphorus when leaves die (Lambers et al. 2015). 

A lot of internal phosphorus efficiency can be attributed to the increased mobility of 

phosphorus within Banksia. Harsh hakea (Hakea prostrata), a relative of Banksia, can recycle 

90% of the phosphorus from their dying leaves with the help of phosphorus transporters 

(Lambers et al. 2015). Phosphorus transporters are proteins embedded in cell membranes that 

help move phosphorus in and out of the cell (Schroeder et al. 2013). Banksia have more 

phosphorus transporters, creating a transportation system that allows the plant to move 

phosphorus where it’s most needed very quickly (Schroeder et al. 2013). Banksia also keep cell 

membranes functioning for longer than other plants as leaves die, giving more time for 

transporter proteins to pull phosphorus and other nutrients out of cells for reuse (Lambers et al. 

2015). 

These are maybe half of Banksia’s low-phosphorus adaptations. Many of them are 

normally stress responses to phosphorus starvation, just turned into life-long adaptations that 
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allow the plant to prepare for, rather than react to, adversity. Each adaptation required complex 

genetic mutations of normal plant processes as Australia’s soils aged and lost their original 

phosphorus over millions of years; Banksia and Australia evolved together.  Banksia species 

replace phosphorus with other elements, work hard to prevent losing phosphorus they have, and 

carefully ration it over time. While some of the strategies Banksia use are found in other plant 

species, no other plant family approaches their extreme specialization. For example, proteoid 

roots which were once thought to occur only in Proteaceae have been found in the pea, birch, 

she-oak, oleaster, and fig families (Skene 2002). Eucalyptus trees, another emblematic 

Australian plant, transport phosphorus within their trunks and leaves and replace phosphorus in 

cell membranes similarly to Banskia (Silva et al. 2022) [16]. 

While Australian plants worked to efficiently extract, retain, and recycle the phosphorus 

already available to them, Australian settlers in the 1800s turned primarily to Banksia’s strategy 

of extraction – but through slash, burn, deplete, and abandon agriculture rather than proteoid 

roots. A ‘frontier farming mentality’ prevailed among farmers. The Australian government was 

selling land at the frontier at such low prices that it was cheaper for farmers to work their land 

until its soil was exhausted–then abandon it for new, unbroken sod a few miles inland (Byerlee 

2021). Fertilizing and preserving soil was an unutilized practice, partly because fertilizers were 

so much more expensive than land. Between 1860 and 1880, planted wheat acreage increased 

from 274,000 to two million acres, and farmers pushed into the drier and less fertile land found 

in the center of the continent (Smith 1988). Simultaneously, from 1850 to 1880, wheat 

production in Australia dropped from 1.1 to 0.4 tons per hectare on average (Byerlee 2021). 

The Australian government, concerned about the declining quality of wheat yields, hired 

Englishman John Custance to start the country’s first agricultural college. He would be fired five 

years into his tenure after a misunderstanding with the Secretary of the Australian Lands 

Department, but before then he would revolutionize Australian farming as its first advocate for 

phosphorus fertilizer (Adelaide Special Collections [ASC] n.d.; Smith 1988). An English 

agricultural scientist and professor who had taught in both England and Tokyo, John Custance 

worked tirelessly in service of farmers and his students (ASC n.d.).  In the four years before 

Roseworthy Agricultural College accepted its first students in 1885, John Custance set up 

rigorous crop breeding and fertilizing experiments on depleted, 25-year-old farmland purchased 

for the college’s experimental farm. He cultivated 180 wheat varieties from around the world 
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with 157 different fertilizer treatments (ASC n.d.), including combinations of salt, gypsum, 

ashes, lime, manure, Peruvian guano, bone dust, and superphosphate, an “artificial” fertilizer 

produced from phosphorus-rich rock mined from islands in the Indian Ocean (Smith 1988). 

Custance found that out of all the fertilizers he tried, superphosphate improved yields the most 

significantly; he subsequently became Australia’s “superphosphate evangelist” spreading the 

word of superphosphate to Australia’s farming communities (Smith 1988). 

While superphosphate had existed for 40 years before Custance started his experiments, 

the low cost of buying new lands and the “firmly held belief” that unused soils were better than 

fertilized ones meant that farmers had been reluctant to adopt fertilizers (Henzell 2007). Even 

with farmers’ initial reticence, the advocacy of Custance, his contemporaries, and a burgeoning 

phosphorus industry made Australia a quick and early adopter of superphosphate. Traveling 

salesmen representing phosphorus companies would demonstrate the effects of “Super” on 

farmers’ fields for no charge if their yields did not double (Byerlee 2021). In 1910, 

superphosphate was applied to 80% of farmed acreage in Australia, up from 27% just twelve 

years earlier (Byerlee 2021). While superphosphate had been applied to fields in Kansas in the 

United States at the time, it would not become widely used until the 1940s (Byerlee 2021). Prior 

to World War I, Australia used more phosphorus fertilizer than any other land-abundant country 

(Byerlee 2021). 

While the immediate phosphorus problem had been solved by superphosphates, later 

advances in “ley” cropping strategies helped retain nutrients in topsoil (Smith 1988). Ley 

farming uses nitrogen-fixing clover as a cover crop to let soil nutrients recover between years of 

producing wheat, instead of letting soils “fallow,” or remain bare (Smith 1988). Soil acidification 

from fertilizer use and resulting metal toxicity became a major problem in the 1900s. Lime, 

powdered limestone rock, is commonly spread on fields to correct soil acidity. As the soil’s pH 

(a measure of acidity) is restored with the application of lime, metals are locked back up to soil 

particles and are no longer toxic to plants. One Australian government researcher in 1988 

predicted that if the cost of lime could be lowered and supplies distributed, “the last great 

problem of sustainable agriculture would start to be overcome” (Smith 1988). Ever since the 

settlement of New South Wales by the English convicts, Australian farmers have sought for a 

“permanent agriculture” where farming is perpetually sustainable without reliance on English 

supply ships or, later, food imports. 
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However, Australian agriculture still relies on phosphate rock imported from finite, and 

dwindling, global supplies. Dana Cordell, an Australian graduate student from the University of 

Sydney, was the first to call the alarm on rapidly dwindling phosphorus resources (Elser and 

Haygarth 2021). Realizing that there was no information available on global phosphorus 

reserves, she started her graduate degree to address her curiosity. What she found was that we are 

rapidly approaching the point of “peak phosphorus,” estimated by Cordell to be before 2035, at 

which our demand for phosphorus will exceed our supply in minable phosphorus reserves 

(Cordell 2009). In 2008, phosphate prices spiked more than 800% globally due to the recession, 

Chinese export taxes on phosphate rock, and shifts towards eating more meat and growing corn 

for biofuel which increased both crop production and fertilizer demands (Brownlie et al. 2023). 

The combination of Dana and other scientists’ scholarship and the 2008 phosphate price spikes 

woke the world to our phosphorus vulnerability (Elser and Haygarth 2021). In 2021, phosphate 

prices spiked again, this time affected by COVID shutdowns in China and extreme weather 

events in the US which halted mining, soaring energy prices increasing transportation and 

production costs, rising fertilizer demand due to US grain subsidies and agricultural growth in 

South Asia and Latin America, and international trade sanctions from the Russian invasion of 

Ukraine (Brownlie et al. 2023). What was an unknown and invisible problem less than 20 years 

ago is now gaining traction, with people attempting to find solutions and raise awareness from 

many angles. One of those angles is working towards using less phosphorus fertilizers by 

improving the phosphorus efficiency of our crops. 

 

Lessons for the Future 

True sustainable agriculture balances the phosphorus applied on fields with the 

phosphorus removed in harvested crops and washed away by rain. In some parts of human 

history, phosphorus sustainability was achieved through the careful collection of human sewage 

and animal manure to be spread on fields, recapturing the phosphorus lost when crops were 

harvested for food. Nothing was wasted. It was a system similar to Banksia’s, with intricate 

cultural and agricultural practices in place to retain phosphorus and reduce what was needed. 

Today, rising fertilizer costs, limited phosphate rock reserves, and the role of fertilizer runoff in 

creating algal blooms in our waterways make it more important than ever to find solutions for 
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permanent agriculture. In our modern world, maybe what we need is to learn how to be more like 

Banksia. 

Today, researchers are learning how they can improve the phosphorus efficiency of crops 

using some of Banksia’s strategies. Phosphorus use efficiency (PUE) is a combination of a 

plant’s ability to 1) uptake phosphorus in the soil and 2) efficiently use it in their leaves, stems, 

and roots (Rose et al. 2012, Hasan et al. 2016). Another way to improve PUE is looking at how 

much phosphorus is invested by plants into growing fruits, grains, and vegetables versus growing 

their stems and roots, which aren’t harvested. If plants use a lot of phosphorus to grow the parts 

of plants we use as food, phosphorus is lost when we transport food to our grocery stores 

(Veneklaas et al. 2012). Separating PUE conceptually into phosphorus uptake, use, and removal 

during harvest helps us understand the impacts on farmers’ fields and decide the best ways to 

breed new crops. For example, increasing phosphorus uptake may improve crop growth 

temporarily, but it will also remove phosphorus more quickly and make farmers need to apply 

more fertilizer (Veneklaas et al. 2012, Rose and Wissuwa 2012). Instead, we should focus on 

creating new crops that use less phosphorus by using it more efficiently (Neto et al. 2016). 

Banksia is evolutionarily adapted to thriving with low amounts of phosphorus through 

evolutionary trial and error spread over millions of years. It’s going to take some work to move 

our modern crops to the same point through human trial and error so we can use less phosphorus 

fertilizer in agriculture. Unfortunately, there is a genetic “glass ceiling” that stops us from 

improving crops to the level of Banksia because we can’t select for plant genes that aren’t there–

or just locked away–without genetic modification, a controversial practice. But, fortunately, we 

have Banksia as a model for study, helping us find genes and traits that might otherwise have 

been unknown as possibilities. We can learn similarly from crop varieties that have already-

existing PUE adaptations. Researchers have already started looking for these well-adapted crops 

and have found high-PUE varieties of coffee (Neto et al. 2016), potatoes (Chea et al. 2021), and 

wheat (Osbourne and Rengel 2002). Most of our crops are also annuals that farmers have to 

replant every year, and researchers are working on engineering perennial versions of crops that 

can retain phosphorus from year to year (Crews and Brookes 2014). Crops that stay alive 

throughout the year can hold soil in place with their roots, preventing soil erosion and fertilizer 

runoff that create phosphorus pollution in our streams (Crews and Brookes 2014). They also rely 
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more on slow-releasing phosphorus bound up in decaying organic matter, so require less 

fertilizer (Crews and Brookes 2014). 

An even more promising approach, because it is one immediately within our grasp, is 

using other plants and microorganisms to help crops access phosphorus. Covering crop seeds 

before planting with spores of mycorrhizae, specialized fungi that attach to plant roots, can help 

increase phosphorus uptake (Hasan et al. 2016). Most plants can form symbioses with these 

mycorrhizae, which give plants nutrients in exchange for energy. Mycorrhizae acquire 

phosphorus for plants similarly to how Banksia trees do with their proteoid roots–by exuding 

chemicals that convert phosphorus to usable forms (Hasan et al. 2016). Similarly, some members 

of the pea family, like white lupin, have proteoid-like roots. Planting white lupin along with 

other crop species allows the white lupin to free up nutrients in the soil that the other crop can 

use (Hasan et al. 2016). 

We might not want our crops to be as efficient as Banksia. Another problem researchers 

are running into is the usefulness of low-phosphorus traits outside of low-phosphorus ecosystems 

like Australia. Plants have different strategies for growth, often dictated by the resources 

available to them. Plants like Banksia grow slowly, deliberately. Every molecule of phosphorus–

or nitrogen, carbon, potassium, or water–is used as efficiently as possible to increase survival. 

On the other end of the spectrum, where resources are available in excess, plants grow wildly. If 

they don’t, other plants will beat them to resources and crowd them out, leading to stunted 

growth or death. Think of annual plants that only live for one growing season–there isn’t as 

much incentive in using phosphorus carefully as in growing quickly and releasing seeds before 

winter cold kills the plant. Plants make trade-offs with the resources they have, investing in traits 

that help them survive. Banksia survive in Australia by growing slowly and living in areas that 

other plants can’t, and so isn’t suited for the rapid growth needed for agriculture. Not all Banksia 

traits will be useful to us as we transition to phosphorus-sustainable crops. But there’s still a lot 

we can learn, and not just in improving our crops. 

Fundamentally, human societies and plants like Banksia all operate under the same basic 

rules of economics, and ecologists study these trade-offs using human economic tools like cost-

benefit analyses and phosphorus budgets (Lerdau et al. 2023). With delayed greening, rapid 

growth is too phosphorus-expensive to be a viable strategy. With proteoid roots, Banksia invest 

large amounts of carbon to produce the chemicals that they need to release bound-up phosphorus 
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in the soil. Similarly, humans have been faced with trade-offs and decisions on how to feed 

themselves and survive economically. Australians did not have the energy or resources needed to 

transfer from a system of treating land as disposable and later, relying on imported 

superphosphates to maintain agriculture. Our human society has shifted into an era of rapid 

growth facilitated by phosphorus and reliance on the food security it provides. Already, 

increasing fertilizer prices have made it so farmers in poorer countries can’t afford fertilizers for 

their crops and increasingly face food insecurity (Brownlie et al. 2023). Our challenge is to find 

ways to return towards sustainable growth and phosphorus cycles before we hit peak phosphorus.  

 

Conclusion 

We have broken a phosphorus cycle that has existed for millions of years and in various 

forms by flooding the world with mined phosphorus. By doing so, we rely more and more on 

extraction of a limited resource, and as the resource dwindles, we become more and more 

vulnerable. Similar to climate and atmospheric CO2, phosphorus has fluctuated over Earth’s 

history, but never at the speed and extent as seen anthropogenically today. It’s remarkable how 

something so small and so unseen, phosphorus, controls things much larger and much more 

human. Australia's history and the adaptation of plants like Banksia to phosphorus-poor soils 

illustrate that intricate human relationship with the element and with the plants that sustain us. To 

understand the invisible impacts of our phosphorus reliance more thoroughly, we will first have 

to go back to the source. 
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The Human Dimension of Phosphorus Extraction 

 Sophia Moreno 

Introduction 

Natural resources are often thought of in the context of the services they provide. Despite 

being largely overlooked, they are juxtaposed by their origin of extraction. On the other side of a 

product's services, is history that is equally dynamic. This phenomenon in the consumer world 

may be reasoned with the world system analysis where a geographic region is placed within a 

hierarchy of core and periphery countries, based on significance. The value assigned to an area’s 

problems is based on its position within the rank of material-producer and consumer. Today, 

phosphorus is considered a finite resource and expected to reach peak extraction over the next 

few decades. The end of extraction-derived phosphorus will weaken our food production chain, 

which has become dependent on fertilizer. This anticipated consequence will stress the global 

human population that has grown exponentially since the introduction of nitrogen and 

phosphorus as fertilizers. Although the end of phosphorus availability is often thought of in an 

anthropogenic context, the social-cultural impacts along the chains of extraction are often 

overlooked. Exploitation of a natural resource is often tied to exploitation of human labor and the 

land (Schrecker 2018). Exploring case studies of phosphorus extraction may educate future 

decisions made on behalf of an ever-decreasing resource. 

The Battle of Waterloo, historic for the final defeat of Napoleon, also has an unexpected 

spot in the history of phosphorus (Mikkelson 2019). The first excavations of phosphorus began 

on the battlefields of Europe. The resource mined there – us. Bone ground into a fine powder 

was the first fertilizer that delivered phosphorus to crops. Bones co-opted from battlefields to 

farm fields in the eighteenth century resulted in a twenty-seven-year period of grave robbing. At 

the time, farmers were not sure what about the human-fertilizer made plants so prosperous. 

Despite their shared ignorance, the farmers saw results – a response that inspired hope after 

surviving through a period of famine. By 1842, twenty-one thousand tons of human bone had 

been used to fertilize crop fields (Snyders 2011). 
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Guano Islands of Peru 

This era of bone craze might never have occurred if a small glass jar of bird droppings 

had not been forgotten about on a shelf for three and a half decades. In 1802, Alexander Von 

Humboldt was traveling to South America, when he took a sample of what looked to be rock 

(Snyders 2011). The smell of ammonia coming from a hillside struck him, after which he 

uncorked the lid of a small glass jar he had on hand and sent it off to Berlin. Despite being 

ignored for over three decades, this action would lead to a string of discoveries, among them 

being that phosphorus was the element that inspired rapid growth in plants and that guano was 

rich in phosphorus. Within four years, the guano boom would see its start. The first shipment in 

1844 was 700 tons from what is now Peru (Snyders 2011). 

This demand increased the need for workers to extract the mineral. Peruvians had more 

than refrained from taking up mining jobs on the guano-rich islands.The mining work gained 

notoriety for the exhaustive, relentless labor and health implications (Snyders 2011). Phosphorus 

exposure has negative impacts on one’s health. It can cause severe respiratory complications 

from the permanent aerosols that build up in the lungs, and the labored days in the sweltering 

heat have caused several people to commit suicide (Weymouth 1950). As companies became 

desperate for workers, companies resorted to “black-birding” migrants under the guise of 

prosperous job opportunities as they came into the new world. Several of their victims were 

migrating across oceans and isolated when they made the decision to join the companies 

(Snyders 2011). Once they were in the company’s possession, they were transported to the 

islands of Peru rather than the states. When they arrived, they discovered they were trapped, 

refused pay, abused and in several cases killed. Displacement of Polynesian, Chinese, and Easter 

Island laborers had been kidnapped over the following years (Snyders 2011). By 1853 this had 

led to the sixty slaves throwing themselves off the cliff face of the rock they had worked to 

extract – just seven years after the beginning of the guano craze (Weymouth 1950). This abuse of 

land and people were the archetype of the linear extraction economy that would become the 

backbone of modern day phosphorus use.  
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Islands of the Southern Pacific   

Phosphorus and mining to a larger extent have been rooted in a history of imperialism 

(Burnett 2005). Agriculture boomed as the world discovered mineral resources that could serve 

as fertilizer. Immense slabs of Pacific islands’ surface were broken into fragments and resettled 

to infertile farmland (Teaiwa 2015). This process began in the early 1900’s when British, 

Australian, and New Zealand mutually claimed these islands under the British Phosphate 

Commissioners (Teaiwa 2015). Banaba, and Nauru were subjected to the Pacific Island 

Company’s resource acquisition over a period of decades. Before the British Phosphate 

Commissioners established their mining enterprise, a monetary value system did not exist on the 

islands. 

For the Indigenous people of Banaba, their hierarchy of values was based in the area they 

originated. Their place of origin was their six-kilometer-long island that was the basis of their 

creation stories and histories. This significance was unceremoniously reduced to the value of its 

lithosphere when colonial countries, more specifically Australia, decided to mine it for 

phosphorus. Banaba, compared to other neighboring islands, provided a more arid climate. From 

centuries of living in the natural cycles of the seasons, the Indigenous people developed water 

capturing practices that involved the women gathering purified water from caves they considered 

sacred. By the end, twenty-two million tons of guano was extracted, and ninety percent of the 

island's surface was transported across the world (Teaiwa 2014). Many of the caves were 

destroyed and the ones that remained were contaminated with heavy metals, and other toxins.  

Only once their island lifeways were unsustainable, did they migrate to Fiji and other 

neighboring islands.  Today, rusted, abandoned infrastructure populates the island.  

The people of Nauru experienced a similar fate. Nauru had developed a similar value 

system on their twenty-three-kilometer island. Nauru was discovered by the British Phosphate 

Commissioner within the same decade and moved quickly into mining (Teaiwa 2015). This 

extraction resulted in one-hundred million tons of phosphorus mined for the island of Banaba 

and twenty-million tons mined in Nauru (Teaiwa 2015). The people of Nauru only gained 

independence when guano was gone and the land no longer had market value (Bustov et al. 

2013). This resulted in eighty percent of each island’s surface being extracted (Teaiwa 2015). 

For the people of Nauru, when the guano-rush was over, the land became infertile, permanently 

changing their lifeways. They must rely on food imported from other countries which do not 
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match their traditional diets. Rather, it is now a system based on processed food and high 

saturated fats. This is far from their traditional diets’ nutritional value and today the people of 

Nauru are among the most obese per capita. They now host a refugee detention center, next to 

old excavation sites, in exchange for Australian aid. Nauru’s colonial past has resulted in current 

economic dependence on foreign aid in exchange for hosting refugees. Today, as many as one 

hundred and forty thousand refugees have been intercepted as they attempted to cross the ocean 

into Australia in service of safety and freedom (Teaiwa 2015). This left them stuck in the 

extractive, economic gears of foreign interest 

Australia’s accumulation of wealth is directly linked to the imposed position of extraction 

the British Phosphate Commissioner had placed on Banaba and Nauru. This notion carries over 

in the present living conditions of Banaba and Naura. “Colonial agriculture. I like to say, 

‘agriculture is not in our blood, but our blood is in agriculture’. If bana- bans think of blood and 

land as one and the same, it follows then that in losing their land, they lost their blood. in losing 

their phosphate to agriculture, they have spilled their blood in different lands. their essential roots 

on ocean islands are now essentially routes to other places. places like Fiji, New Zealand, and 

Australia,” (Teaiwa 2015). 

 

Western Sahara 

As Banaba and Nauru approached their guano bust, Western Sahara was discovered for 

its troves of phosphorus within its landscape. This was discovered by a geologist, who was sent 

to map the Rio de Oro colony sent by the Spanish government (Gilkerson 2017). The samples 

lay ignored for some years, until this group of geologists confirmed a previously asserted claim 

that Western Sahara was indeed abundant in phosphorus. 

Western Sahara at the time was on its way to independence following refugee 

conventions and Declaration on the Granting of Independence of Colonial Countries and 

Peoples. This was following the wave of independence that followed World War II, including 

neighboring countries such as Algeria (Silva n.d.). In the 1960’s the Sahrawians of Western 

Sahara were fighting for their independence from Spain Their movement was beginning to gain 

traction and a glimmer of hope existed in the post-World War II wave of anti-occupation 

(Gilkerson 2017). This changed when Spain signed the Madrid agreement that split the territory 

of Western Sahara between Morocco and the adjacent country below (Gilkerson 2017). The 
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Sahrawians subsequently began to protest the Moroccan government. This resulted in the 

uprising of Sahrawians The king of Morocco’s response to this was "kill anything that moves.” 

Which had resulted in the death of more than a thousand within the first year. The Sahrawian’s 

water was poisoned, livestock killed, 140,000 bombs were placed in the desert, many of which 

are still present today. This coerced them into refugee camps where they currently remain, in the 

longest refugee crisis in history (Silva n.d.). 

Prior to their colonization, the Sahrawians lived in a migratory pattern, based on the 

season. Despite living in the harsh Saharan climate, this cyclical lifestyle had sustained them for 

centuries (Silva n.d.). The Sahrawians’ lifeways were disrupted and now survive on foreign 

humanitarian aid in one of history’s longest refugee crises (Gilkerson 2017). A twenty-seven 

thousand kilometer sand wall cuts through Western Sahara, ostracizing the Sahrawians’ from 

their homelands and protecting the phosphorus - the main outlet being the world's largest 

conveyor belt (Silva n.d.). Morocco has reduced Western Sahara to a conveyor belt of resource 

extraction and profitability. 

 

Today 

The same way the notion of “away” does not exist, the history of these regions is not 

removed from us through the linearity we assign the past. Meaning, the impact of these events 

are still present with us today despite the generations that have passed. The islands of Banaba 

and Nauru are infertile, and the Sahrawi people of Western Sahara are still trapped in refugee 

camps. Many of the elders of these communities reminisce to the younger generation about their 

homeland – the way it once was. The newer generations are divorced from these memories, and 

subsequently, parts of their cultural identity. When new generations are unable to fully 

appreciate the injurious nature of these practices, it becomes more difficult to see the cumulative 

impact. Today the people of Nauru discovered two million additional tons of guano and below in 

their lithosphere. Despite eighty percent of the island being excavated and a slew of disparities 

the people face, some see it as the only viable way of transitioning into a sustainable future 

(Clifford et al. 2019).  

These case studies illustrate the social-cultural political problems created by the 

commercial interests of our societies and that democracy ultimately defers to the exploits of 

capitalism. Though they are not unique to the element phosphorus. All over the globe, colonial 
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countries have a history of claiming territory for possession of land, or resources found on it that 

has resulted in the collapse of cultural identity, security and subsequently fostered a 

codependence of government aid in exchange for national compromises. Core countries are 

beginning to consider the ramifications of excess inputs, in the face of finite resources and 

poisoned waterways via eutrophication (Peterson and Bruulsema 2019).  

Phosphate rock is one of the most highly traded commodities in the world (Nesme, et al., 

2018). Around thirty percent of energy use in agriculture in the United States is from fertilizer 

production and use (Macdonald et al. 2012). With growing concern about the ramifications of 

climate change, we cannot afford to continue the energy intensive process of mining, processing 

and transporting phosphate rock and fertilizers across the globe. It is estimated that the peak 

phosphorus extraction will be reached by 2030. As resources continue to dwindle, a scramble to 

quantify what is left of this finite resource has begun. Morocco holds the largest reserve globally 

at an estimate of seventy-three percent (Yuan et al. 2018). They are the leading country 

producing beneficiated phosphate rock and expected to be supplying eighty percent of the 

world’s phosphorus by 2100 (Issaoui 2022, Yuan et al. 2018). Although the United States and 

China are the two other largest producers, both countries keep phosphorus for their own 

production (Issaoui 2022). “The United States, the world’s third-largest producer, are net 

importers. We need more phosphate rock than we produce to meet our domestic needs,” (Issaoui 

2022).  This has placed Morocco in the unique position of largest international exporter. 

In anticipation of this resource monopoly, more dialogue has been had, imagining a 

future where phosphorus is efficiently used. These efficiencies are built into the framework of a 

circular phosphorus economy where this precious element is used conservatively, and 

phosphorus waste is recovered (Walsh et al. 2023). Despite these conversations, dominant 

dialogue fails to consider the social-cultural impacts of this pattern of behavior of extraction. 

Ann Stoler of Banaba asks “What remains in the aftershocks of empire? Such effects reside in 

the corroded hollows of landscapes . . . The question is pointed: How do imperial formations 

persist in their material debris, in ruined landscapes and through the social ruination of people’s 

lives?” (Teaiwa 2015). The benefit of retrospect means nothing unless future behaviors and 

decisions are educated by it.  

These stories serve as a microcosm of what happens if we don't transition to a circular 

phosphorus economy. Similar to this large-scale timeline of phosphorus extraction, I ask us to 
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consider the global implications of this extractive economy. Its patterns are being repeated today 

on Pacific islands where several have been re-discovered for precious minerals. As we reach our 

evanescent plateau of “peak phosphorus,” humanity faces cross-roads between a circular and 

extractive economy (Urlich 2011, Yuan et al. 2016). Our bird’s eye view from the top of “peak 

phosphorus” may reveal an alternative to the extractive economy this pattern is based on - where 

the law of the minimum does not limit humanity through squandered resources and desecrated 

land. As we move towards a circular economy, the value of resources be weighed in their whole 

production life – that it be reapportioned to the cost of extraction, production, and whole-

systems-impact of its input. 
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What a Waste: Phosphorus and Waste Recycling 

Rebecca Pyles 

“The history of men is reflected in the history of sewers” -Victor Hugo 

 

Introduction 

Originally, natural P resources were used by ancient man to fertilize crop fields (Zhao 

2019). Animal and human excrement, fibrous crop byproducts, and bone meal were commonly 

harvested, processed and spread across the land to nourish crops by early farmers. The 

consolidation of cities caused a spatial shift in the location of nutrients (Mikkelsen 2019), with 

crops that captured P in the fields being transported to cities for consumption. This concentrated 

the element into one location, namely in the form of human excrement, with no means of 

returning to the land from which the crops were grown. Human bodies are inefficient in their 

uptake and assimilation of P, with roughly 23% of all consumed P incorporated into the 

organism’s tissues and 77% lost as urine and excrement. Recycling human waste is a particularly 

underutilized pathway and could translate to some 3 million tons of P being recovered globally 

(Kooij et al. 2020). However, the infrastructure for collecting and recycling human excrement 

has large upfront costs. There is also a very powerful cultural aversion to the idea of coupling 

human waste systems and food production systems, an “ick factor” from the majority of people. 

It begs the question whether P recycling is worthwhile. It may not be economically worth it to 

spend money on infrastructure to capture “icky” P if the populace refuses to buy produce grown 

from it. It may also not be worthwhile to recycle P if it will impart severe negative health impacts 

on the population. As the final nail in the coffin, it may not be worthwhile to put forth large 

efforts to recapture phosphorus if the yields are too small to be significant. Benefit cost analysis 

of P recycling must be assessed for a solution to be made. 

 

History of Waste Management 
 

The implementation of sewage systems to deal with human excrement is a relatively 

recent feat of human ingenuity. Understanding how we got to this point provides critical insight 

into how this system has benefitted us to the detriment of the P cycle. It is critical for human 

health that waste be managed to limit exposure and lower the spread of disease. Even ancient 
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humans knew that waste was considered filthy, but sanitation for public health was not as well 

practiced until the 19th century (Lofrano and Brown 2010). Nomadic hunter-gatherers lived in 

small communities scattered about huge tracts of land, frequently roaming and openly defecating. 

Waste produced by these peoples experienced natural decomposition, the same as the waste from 

any other animal. 

With the domestication of ruminant animals and the beginnings of farming, human 

societies shifted towards an agrarian lifestyle (Pitt et al. 2017). With more advanced civilizations, 

such as the Mesopotamian Empire and Indus Valley, came more sophisticated drainage systems 

for carrying waste away from homes and into designated cesspits (Lofrano and Brown 2010). 

However, disease exposure still presented itself as a threat, with many people still discarding 

their waste onto the streets. Hygiene in these societies was becoming a priority, with social 

stigma against open squatting beginning to form. The Greeks had a sanitary system that was so 

ahead of its time that even modern society has not caught up with it. Greek societies had toilets, a 

sewer system running beneath the roads, and public latrines so even lower class members had 

access to waste disposal. Pipes drained the wastewater and storm water to a singular basin 

outside the city. Once collected, this waste was used for irrigating and fertilizing crops and 

orchards. 

With the fall of the Roman Empire in the 5th century, sanitary systems also fell into the 

Dark Ages and were largely abandoned across Europe. Wastewater was collected from buildings 

in chamber pots and dumped onto streets with a call of “Look out below!”. The social stigma 

became centralized around water in general and it was seen as unclean. Instead of instilling 

practices that maintained hygiene, filth was simply covered up. Powdered wigs and perfumes 

were popular for reducing the appearance of filth in one’s environment. Majority of the drinking 

wells were contaminated with wastewater. It was after various plagues swept across France that, 

in 1539, King François I ordered civilians of Paris to build cesspools near their homes for 

wastewater. This practice became popularized across Europe. It was the job of “rakers” to 

remove the waste from cesspools and sell it as “night soil” to farmers outside of town. As guano 

and mineral P became key fertilizer sources, the use of night soil became obsolete (Borowy 

2021). 

With the Industrial Revolution, sewer systems were implemented in which wastewater 

was piped away from homes and discharged directly into local water sources without any 
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treatment. The main driver behind this idea was dilution and allowing natural processes to purify 

the water. However, the sheer volume of wastewater overpowered natural purification rates. 

With the turn of the 20th century, the public became more aware of water pollution and its 

impacts and wastewater treatment plants (WWTPs) were introduced. The main goal of WWTPs 

is to remove as much suspended solids as possible before the effluent is discharged back into the 

environment. Today, there are standards and tests developed for wastewater to minimize harmful 

chemicals from entering the environment. 

Human Excreta and WWTP 

In the modern world, what happens to waste post-flush? A complex network of sewers, 

pumping stations and treatment plants collect and treat the effluent. The EPA lays out two stages 

of sewage treatment: primary treatment and secondary treatment. Primary treatment involves the 

physical removal of large, heavy objects and suspended biosolids. Screens allow for the removal 

of large objects, such as sticks or rags. Sedimentation chambers allow for small heavy objects 

that settle out in the water column, such as small rocks or biosolids. Secondary treatment 

involves the recruitment of bacteria to reduce the remaining organic and inorganic solutes. Two 

techniques commonly used are trickling filters and activated sludge process. The trickling filter 

technique passes the wastewater through three to six feet of various media beds that house 

biofilms. These bacteria uptake the dissolved organic matter, rendering cleaner water. This water 

then enters another sedimentation chamber for the removal of excess bacteria. The activated 

sludge technique passes wastewater into aeration tanks that contain bacteria-loaded sludge. The 

bacteria are supplied with air and allowed to process the water into harmless byproducts over the 

course of several hours. The water also passed through a sedimentation chamber for excess 

bacteria removal. 
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Figure 1: Wastewater treatment plant primary treatment diagram from the EPA. 

 

Figure 2: Wastewater treatment plant secondary treatment diagram from the EPA. 

Once secondary treatment bacteria are removed, the water is disinfected, typically with 

chlorine but ozone and UV light are also possible options, before being discharged into the 

environment. Today, various states require a dechlorination process before allowing the water to 

discharge into lakes and streams. Standards also exist in various places that limit the amount of P 
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allowed to exit in discharge. The maximum amount of permissible P in effluent varies by 

country, with the EU demanding 80% of P to be removed in biosolids. Non-compliance with the 

law and non-strict legislation tend to blur this standard somewhat, but 80% is a rough 

approximation. Treatment plants are frequently updated to increase their wastewater processing 

efficiency. In one 12 year study (2003-2015) in Europe, total P concentrations in treated 

wastewater decreased during the course of the study by 60.8% from 5.1 mg/dm3 to 2.0 mg/dm3 

(Kaczor 2020). To further minimize the environmental impact of the treated wastewater, some 

countries, such as France, utilize constructed wetlands near discharge pipes as P sinks 

(Morvannou et al. 2022). 

 

Pathways from Excreta P to Fertilizer P 

P recycling from human excrement can be categorized into three routes—sewage sludge, 

struvite recovery, and source-separated urine. In the biosolids route, raw sewage sludge from 

wastewater treatment is directly applied to the land. In Europe, only 25% of human excrement P 

is recycled back to agriculture from sewage sludge, with the rest being subject to landfills or 

incineration (Kooij et al. 2020). The low amount of recycling is due to the wide range of other 

pollutants that can come from wastewater. Iron or aluminum from industrial wastewater bind to 

P, rendering it unavailable for plant uptake. Heavy metals, pharmaceuticals, and organic 

contaminants also make raw sewage sludge a hazard to use. Treatment of sewage sludge is 

necessary for usage, transport, and health reasons. Pressing, centrifugation, composting, 

pasteurizing, digesting and treatment with lime are all potential treatment methods for raw 

sewage sludge. The term ‘biosolids’ refers to the end product after the raw sewage is treated. 

Even with treatment, biosolids do not act the same way as mined P fertilizer. For one, it is 

a bulkier product making it harder to transport and apply onto fields. Farmers must employ 

different application techniques due to biosolids’ slow release rate. Biosolids tend to be over-

applied and become a leaching risk, further exacerbating the eutrophication issue. The 

availability of P in biosolids depends on treatment, as Fe, Al or Ca reduce P availability. Policy 

for use of biosolids varies around the world, with some countries employing strict standards and 

some countries outright banning its usage entirely. The USA, in particular, has been heavily 

using biosolids in agriculture since the 1970’s. According to the Nation Biosolids Data Project, 

54% of all biosolids produced in the USA were recycled in 2018. 
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The recycling treated human waste has a lot of potential when it comes to reducing 

reliance on extracted mineral phosphorus. However, the use of biosolids is hindered by health 

risks posed by improperly treated biosolids, which can carry bacteria, viruses, and helminth ova 

(Elser and Haygarth 2020). This risk is minimized with high heat treatments as only “Class A” 

biosolids that have been subjected to high heat are considered safe enough for use on food crops. 

“Class B” biosolids are subjected to less stringent treatments but are safe for use on animal feed 

crops. Another concern for biosolid application is the associated heavy metal accumulation, 

particularly in systems that receive industrial waste as well. Multiple studies have shown that 

long-term biosolid application on cropland leads to steady accumulation of heavy metals in 

agricultural products, often above environmental quality standards (Koupaie and Eskicioglu 

2015). Exposure to heavy metals such as cadmium, copper, zinc, lead and nickel are known to be 

associated with various diseases. For example, high cadmium concentrations can lead to kidney 

dysfunction and hypertension (Koupaie and Eskicioglu 2015). Methods are currently in 

development to isolate heavy metals from biosolids using acid leaching and microwave 

irradiation (Hakeem et al. 2023). 

Unlike the biosolids route which utilizes the post-treatment end product, the struvite route 

starts back at the WWTP stage. Struvite is a precipitate that occurs when magnesium, phosphate 

and ammonium achieve a 1:1:1 molar concentration under high pH conditions (Le Corre et al. 

2009). Struvite crystals spontaneously form through reactions with ions released by bacteria 

metabolizing the Mg present within guano, manure, wastewater, and even kidneys (forming 

kidney stones). Within WWTP, struvite is a naturally occurring byproduct that forms crusts 

within anaerobic chambers and actively hinders equipment by clogging pipes and raising 

maintenance costs. Utilizing struvite can vastly improve P recovery from excreta. The fertilizing 

potential of struvite is much higher than biosolids, being 13-14% P by weight as opposed to 1.4% 

P by weight. Struvite also has low water solubility, allowing it to act as a slow-release fertilizer 

to prolong nutrient release. The N:P ratio in struvite is 1:1, so as much as struvite removes P, it 

also removes N from wastewater effluent. Plants grown with struvite fertilizer have similar yields 

to those grown with traditional fertilizers (Hao et al. 2013). 

One case study, the Portland Durham WWTP achieved a P recovery rate of 90% (500 

tons of P) by running wastewater through a fluidized bed reactor and collecting struvite. The 

transportation costs of struvite were balanced out by the revenue from the fertilizer and money 
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saved from maintenance fees (Cordell et al. 2011). Japan was the first country to implement 

complete P removal from WWTPs as struvite and subsequently profit off the produced fertilizer. 

Other studies indicate that the lack of struvite usage may be due to few treatment plants 

collecting struvite, limiting its availability, and it not being widely known by farmers, limiting its 

demand (Le Corre et al. 2009). However, like all processes, there are some downsides to 

consider, that result in struvite usage being rare in agriculture. There is a large financial barrier 

for implementing struvite collecting technology at WWTPs. This also means struvite fertilizers 

must be priced to keep up with harvesting costs, being roughly three times as high as traditional 

fertilizers. The fertilizer efficiency of struvite is on par with monocalcium phosphate and 

dicalcium phosphate, making it much more expensive for an equivalent product (Hao et al. 

2013). The lower fertilizer efficiency is in part due to the purity of struvite crystals yielded from 

common methods. Current struvite growing methods maintain a pH range of 9-10. However, for 

highly pure (99.7%) struvite crystals, closer to neutral pH’s are required (7-7.5) and the process 

can take over 3 months. Procedures for rapid crystallization are expensive and can reduce crystal 

size and form incorrect products of MgKPO4 and Ca3(PO4)2. Subsidies and much financial 

support to farmers and WWTPs would be required to cement struvite as an economically viable 

option. 

The third route, source-separated urine involves keeping urine separate from feces and 

utilizing it as fertilizer. Urine, if properly separated, is relatively sterile and does not carry 

pathogens. Around 50-70% of excreted P is contained in urine, as well as high concentration of 

other nutrients. Urine diversion toilets (UDTs) separate urine into a front bowl and feces into a 

back bowl. They tend to have a higher upfront cost and require specialized installation. Source-

separated urine is also a more viable option for people living in rural communities that lack 

access to sewage infrastructure. According to the WHO, the percentage of the global population 

that has access to safely managed sanitation, which includes sewer systems, pit latrines or 

compost toilets, was only 45% in 2019. Even for those within reach of safely managed sanitation, 

only an estimated 33% of excreted P arrives at a WWTP due to losses within sewage 

infrastructure (Kooij et al. 2020). In one study in Bangladesh, raising awareness about the 

environmental impacts helped soothe over initial protests against the implementation of UDTs 

(Uddin et al. 2014). An estimated 11-17% of all P excreted by humans could be recovered by 

implementing UDTs in rural and developing regions. This number could be even higher if UDTs 
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were implemented in places that already have access to WWTPs, though it could compete with 

the struvite route. One obstacle in using urine as fertilizer is its high N:P ratio, which can change 

dramatically based on body size, diet, exercise, hydration, and environment. In one study, N:P 

ratios ranged from 8:1 to 42:1 between households in the location. The values tend to be around 

10:1, which may be deficient in N or P depending on the plant it is fertilizing. N:P ratios of urine 

would need to be adjusted to yield a consistent product for farmers to use. Another large obstacle 

would be transportation, especially in rural communities. Kooij et al. (2020) mention 

precipitating struvite from collected urine and transporting that instead. Struvite is much cheaper 

to precipitate out of urine than sewage sludge, however future studies are needed to evaluate 

whether the cost of urine-precipitated struvite fertilizer would still not be economically viable 

relative to traditional fertilizer. 

Conclusion 

Various models presume that phosphorus demands will outstrip dwindling mineable 

reserves as seen in Figure 3. There are various incentives to change current phosphorus usage. 

Not only does it degrade waterways by eutrophication but money spent on mineral fertilizers 

feeds into the exploitation of people in countries with high phosphorus reserves. Current 

phosphorus mining practices disproportionately target marginalized peoples Western Saharans. 

Adopting more efficient farming practices, such as on the Nagy farm, across the world can lower 

demand. Reusing waste, including human, animal and food waste, can increase phosphorus 

supply. As seen in figure one, these are only parts of a multifaceted solution. Plants such as 

Banksia have adapted to low-phosphorus. Solutions require consideration from the government 

and the public. Legislation can help all peoples to conserve phosphorus. How we will manage to 

feed future populations is uncertain. What is certain is that decisions made now can guide 

phosphorus and the environment stewardship moving forwards. 
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Figure 3: Graphs shows predicted future of phosphorus supply and demand (Nair 2020). Also displays various 

actions that can either lower demand or increase supply. 
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Endnotes 

Santo Mallon 

[4] Here’s all the “cycles'' that might be fun to know about but aren’t really necessary for this 

paper. Most of these are interconnected, but not all relationships are two way. Starting large and 

getting more focused. Firstly, there’s these things called Milankovitch Cycles, which are 

ultimately the things that determine whether we are in an Ice Age or not, these are actually 3 

cycles that all compound and counteract, depending on how they line up. Those three cycles are, 

the eccentricity of Earth’s Orbit, either more circular or more (by tiny amounts) oval shaped, 

how slanted the Earth's tilt is, not by more than a few degrees, and the last one of these is axial 

progression which is what's responsible for the Progression of the Seasons, and why we have 

leap years. That basically is the long term dominating force for climate on Earth, but we also 

have various geologic cycles. These include all the different types of rocks getting melted, 

metamorphosed, they come out as lava but also magma if they cool in the Earth. Many rocks 

actually help determine the Carbon cycle, since the ultimate sink for all Carbon is inside the 

Earth via the process of weathering of Silicate rocks, stuff like Quartz, Feldspar, Olivine and 

such and so forth.  

Speaking of elements and their cycles, how about Nitrogen too, which is kinda a mix between 

the Phosphorus and Carbon cycles, with both the atmosphere and biosphere and Lithosphere. Oh 

and how about the water cycle, which is a humongous part of all the element cycles, but itself 

super influenced by the Milankovitch cycles. On the topic of climatic cycles we have Hadley 

cells and Atmospheric cycling, whearin hot moist air rises from the Equator, raining out its 

moisture as it rises, only to be pushed out to the poles via Earth's rotation and eventually cooling 

and falling, now dry, over many of Earth's deserts. Then above those is another mid-latitude cell, 

and above those are polar cells, all part of the same climatic cycles, greatly influenced by the 

Milankovitch Cycles, as well as Carbon and Water cycles, while also greatly influencing the 

Carbon and Water cycles. Oh ya, about that water, did you know its affected by the Lunar cycle 

in these ways called tides? The Tides don't really impact the Water cycle on a large scale, BUT 

the Lunar cycle does impact the Milankovitch Cycles by altering Earth's orbit slightly! What a 

great interconnected story. 

 And last but not least, my favorite, Bicycles.  

[5] If you have a Pyrex glass bowl in your kitchen, congratulations, you are a Boron friendly 

home. Boron, with its naturally poor heat conductivity (a product of how wide the atomic bonds 

it forms with itself are) is added to, well, glass, Silicon-DiOxide (SiO2, which happens to 

basically be Quartz but without a coherent structure, technically, a liquid [5.1]) to dampen the 

effects of sudden changes of heat. This allows it to heat up and cool down not just quickly, but 

also to a wide range of temperatures, where normal window glass would start to deform and 
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melt. Not that this “Borosilicate glass” isn’t impervious to melting.... See figure X for the results 

from one of the authors' accidental demonstrations of that.  

 

[5.1] The common (as in, for non Chemistry majors) understanding of matter is our beloved 

solid-liquid-gas-plasma diagram. This, however, is uhhh wrong. Much like sexuality, matter is 

much more fluid... sometimes literally. While there are several hard boundaries between the 

phases of matter, these boundaries tend to break down with super high or super low pressures. 

Never mind that there's multiple varieties of the different phases, such as liquids, where we have 

Newtonian fluids (like water) and non-Newtonian (say, flubber) that can be divided into even 

more categories. These vary based on a lot of principals. 

 A fun note about glass being a liquid, if you’ve ever gone to Europe and seen wibbly wobbly 

500-year-old stained glass windows in the churches, that's actually the glass, a liquid, slowly 

dripping and oozing down after 100’s of years of heating in the Summer and cooling in the 

Winter. Evidence that glass is one of the oddest, but most common, liquids we have.  

 

[6] I guess we should talk about what “better” means right? That kinda depends on the use, to 

nobody's surprise. For one when BN (the general formula, literally one Boron and one Nitrogen 

next to each other, either taking the shape of a diamond, or flat hexagons) is used in its 

hexagonal form, similar to graphene (basically graphite) it is an incredible lubricant, which 

works in all sorts of extreme environments where others break down. The Diamond version is 

similar, used as a very slightly softer replacement for diamond in environments where Diamonds 

might melt or even dissolve.  

 

[7] While not very common in the 21st century, 20 Mule Team Borax was one of the largest 

laundry detergent companies in the world during the 18 and 1900’s. The first permanent white 

settlers in the Death Valley area were there to mine Borax, a naturally occurring mineral that will 

come up later as a quasi-solution to some important problems. Suffice to say that nothing gets 

your clothes so clean as Borax from the 20 Mule Team.  

 The “Let me stand on my 20 Mule Team Soapbox” is about as close as you can get to an 

inside joke with the Periodic Table 

 

[8] Ok in reality it’s the code for MOST life, depending on your definition of life. Bacteria, 

microbes, animals, plants, fungi and more all use DNA, which then gets split in two and read by 

some neat proteins in our cells and bla bla bla biology. Viruses, however, do not use DNA, they 

only have that split in half version, called RNA. The question is, are viruses even alive? To be 

honest, I can’t answer that question, I don't even know my own opinion on it, but suffice to say 

that DNA (Deoxyribonucleic Acid) is basically just RNA (Ribonucleic Acid) with a safety cap 

of... well another mirrored RNA attached to close it off.  
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[9] Adenosine Triphosphate, Adenosine is one of the Nitrogen based compounds in DNA, only 

this time it’s not actually in DNA. The Triphosphate is basically a chain of Phosphorus and 

Oxygens, of which there are... well... 3, tri, Phosphorus atoms, in a molecule called ‘Phosphate’ 

which again, is just more O’s and P’s.  

 

[10] Elements have, more or less, 3 basic attributes, which then determine their characteristics. 

Firstly and most importantly, the number of Protons, or the + particles. This, alone, determines 

what the element itself is, whether it’s a Hydrogen or Helium, Germanium or Wolfram, each 

element has its specific 1, 2, 32, or 74 Protons. Any more or less makes it a completely different 

element, namely, one with more or less Protons. 

Next we have the Electron, or - particle, these affect the ability and desire for an atom/element to 

bond with another. Footnote [6.1] will tell you a lot more, but basically an atom ideally has equal 

numbers of Protons and Electrons, but this changes often when 2 different elements, with 

different numbers of both come into contact, usually ending with 1 having more, the other less, 

but together they generally have the same amount as they both started with.  

Finally, the Neutron, or... ok uhh.. the = particle? The neutral particle. With no charge neutrons 

affect a few important things, mass, size, and stability, plus a few others. The same element can 

have multiple different numbers of Neutrons. Phosphorus as I mentioned has 22 different flavors, 

based on the different number of Neutrons, we call these different flavors 'Isotopes’. The most 

important part in general is that some are stable, most are not, and that number varies based on 

some math that I don't really understand.  

 

[10.1] Ok, get yourself a good cup of tea, and be ready to open up a lot of tabs on your web 

browser. If you already know how electrons work, or just don't care, go ahead and go back to the 

paper, otherwise get ready for some good nerdiness that is both oversimplified and overly 

complex at the same time. Let’s again establish that every element ideally has as many protons 

as it does electrons. When an atom is formed, through various methods, usually an Electron is 

either created or destroyed (technically just ‘transformed’ but whatever) with a proton. These 

Electrons don't particularly like each other, and so they tend to avoid each other, but have certain 

rules that determine how they do that. We will ignore some of those rules, and not others, largely 

dependent on how well I remember them from Chemistry classes. The first of these rules 

however is the notion that the reason for that ‘every atom wants as many Electrons as Protons’ is 

because of the overall charge of an atom. Atoms want to be neutral, mostly, which means you 

need as many + charges as you have - ones. However the location of the electrons makes this 

equation not really 1 to 1. At this point I would advise finding a Periodic Table, I would suggest 

Ptable but you do you. Electrons organize themselves outside of the Nucleus in a few distinct 

ways. Firstly there’s what we call “Electron shells.” These are distinct energy states (but just 

pretend they are ‘areas’) where the Electrons like to be depending on how energetic they are and 

how many they are and, really if you want to be pedantic we could say that actually all of them 

are always everywhere at the same time, but that’s quite literally neither here nor there. Anyway, 

https://ptable.com/?lang=en#Properties/Series
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these shells come in 4 important groups, called “blocks” and a couple that we will ignore. These 

blocks are the S, P, D, and F blocks, in that order. There’s a lot of fun stuff and, for fun facts to 

keep you interested, Mercury is liquid at room temperature because the F block is weak, but in 

general we are only gonna care about the S, P and D blocks. Before we get into the blocks 

however, there's one (or two) more things we need to mention first. That is Spin and & Paulings 

Exclusion Principle. Spin is... well it doesn’t matter what it is, but think of it as an inherent 

property that every electron has, either its Up, or its Down, and we don't care why. Pauling's 

Exclusion Principle works off this Spin. Each shell/block (these are not strictly the same, but 

more on that later) has only a certain number of electrons it can hold. This is determined by how 

many ‘orbitals’ each shell has, with each orbital being able to hold 2 electrons, one with spin Up 

and one with spin Down.  

 Ok, at this point, take a break and reread anything that’s confusing, it only gets worse.  

Each block has a specific number of orbitals, with the S block having 1, P with 3, D with 5, and 

F with 7. Don't ask me why, I don't know, but suffice to say that THIS is why the Periodic Table 

of The Elements looks the way it does. The way Pauling's Exclusion Principle works with this is 

twofold, first that each orbital must have 1 up and 1 down, but also that ALL the orbitals in a 

block must have 1 electron in them before ANY orbital can get a 2nd electron. Remember how I 

said an atom wants to be neutral? Well yes, but also that was kinda sorta very misleading. If we 

look at the Periodic Table we’ll notice how they have little chunks to them? Those are the 

blocks, the first 2 columns are the S block, the middle, lower guys are the D block, the guys on 

the right from Boron to Neon are the P blocks, and way at the bottom (usually put there to save 

space, though it is somewhat confusing I agree) are the F blocks. That too2 row tall gap between 

the P & D and the D & F blocks is important. Atoms want to be neutral, yes, but they ALSO 

want to be as close to the right side as possible, but sometimes the easiest way to do that is to go 

all the way Left and come back. We call all these electrons the “Valence electrons” and they can 

be mathematically described as everything that isn't both in a filled out block & also the 

outermost shell. Now we need to describe the difference between blocks and shells. Blocks are 

the S, P, D, F, but these come in numbered forms, more or less but not exactly related to when 

they fill up/how high/low you are on the Periodic Table. Everybody has the S block, but each 

element only has the S blocks of however many rows it is below Hydrogen. So H would have 1S 

and Lithium would have both 1S AND 2S (and also an empty 1P)  and so on so forth. This really 

makes much more sense if you actively have a table to look at.  

 Ok, so with all that out of the way, why do care.... Well, let’s look at Phosphorus, again, 

P. Phosphorus is on the 3rd row (from the top) and, ignoring the confusing  guys in the middle, 

the 5th column. This means it has 5 valence electrons, with a completely filled 3S block, and ½ 

filled 3P block. This means that if necessary, the P atom can form 5 bonds (with some nuance 

that might come up later). It doesn’t want to form 5 bonds, it would rather form 3, and, ideally, 3 

where it gets the electrons, but if you take P and O and make them fight, the O will always win. 

And thus you’ll end up with a lot of P’s with 5 bonds, and thus we get the bonds in our so critical 

ATP and DNA. 
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 One last note on this, elements have what we call ‘electronegativity’ which can be 

simplified as “how much any atom wants more electrons, rather than less.”  Look at the table 

again, usually the higher the the element, the more electronegative it is, the further right the 

atom, the more electronegative it is, hence why in a fight between O and P, O will always win 

and get however many electrons it wants (2). This took me over an hour to write. 

 

[11] Charged molecules are usually called “Ions”. Ions come in 2 flavors, Cations which are 

positively charged, and Anions which are negatively charged. An easy way to remember them is 

to simply get them both wrong so many times that you give up trying to remember.  

 

[12] The only exception to this I care about is Turquoise. The beautiful... well, turquoise mineral 

that the American Southwest, and especially its Native Peoples, is famous for. Funny enough, 

while not an Apatite, it really only exists because of Apatites, or at least that’s my 

understanding? Either way, the Turquoise itself is worth well more than the Phosphorus within it.  

 

[13] Among those other reasons are that Apatite formations occasionally have very high 

abundances of Rare Earth Elements, you know, the Elements we pretend to need an infinite 

amount of to make the transition away from fossil fuels... even though in reality we actually just 

need to limit our consumption in the first place and recycle what we do use.  

 

[14]    

 

[15] Morocco has some of the largest and most expansive known Apatite reserves in the world. 

This has led them to also have the longest conveyor belt in the world at over 61 miles long. More 

context can be found in Sophia’s portion of the paper starting on page 68. 
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[16] Eucalyptus trees are essential habitat for drop bears, koala-like marsupials that have a 

unique way of obtaining dietary phosphorus: dropping down on small, unsuspecting animals 

passing below their gum-tree perch. Vegemite was initially developed as a repellent by English 

colonizers, who noticed Aboriginal Australians applying a similar yeast-paste behind their ears, 

developed from fermented Banksia seeds. Other famed menaces of the Outback include Hoop 

Snakes, serpents that move not by slithering but by rolling into hoops and spearing their prey 

with their tails. Fascinatingly, species of snakes in North America have evolved Hoop Snake-

style hunting as well, a spectacular example of convergent evolution.  

[17] Phytophthora cinnamomi is a destructive fungus now invasive to many parts of the world. 

In Australia it wreaks particular havoc in Phosphorus-poor soils and among the plants 

particularly well-adapted to those P poor soils. One of the best ways of killing this fungus is to 

overload it with Phosphorus-based fungicide, which while not always a problem in much of the 

world, can cause terrible problems in Australia. See, a plant that is great at living without much 

Phosphorus still needs it, and generally they give up their ability to regulate Phosphorus uptake 

in favor of getting every last ounce of it, since there's not really any reason to limit uptake. The 

problem is now that you’ve given this guy way too much Phosphorus it cannot take it all in since 

it's already given up its ability to be selective, and badabing badaboom you’ve now killed both 

the fungus (yay) AND all the native plants (boo)! 
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