

Bozeman's Growth

- Current population (2017): 46,596
 - Over 4.3% growth rate
 - 17,000 new residents since 2000.

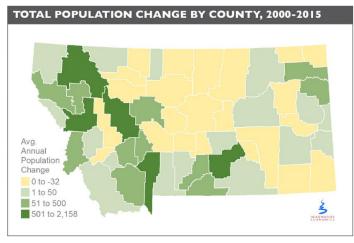


Figure 1. Annual growth in Montana counties (High Country News).

Why Are Wetlands Important?

- Filter sediments
- Nutrient/heavy metal retention
- Water storage
- Carbon sink
- Wildlife habitat
- Outdoor recreation

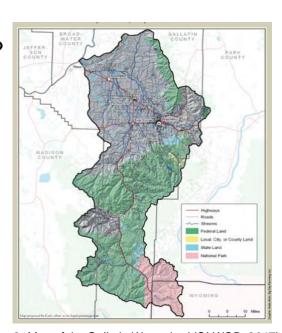
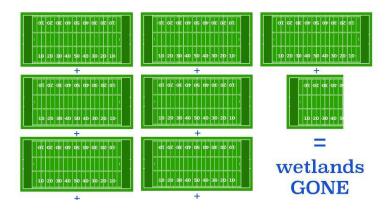
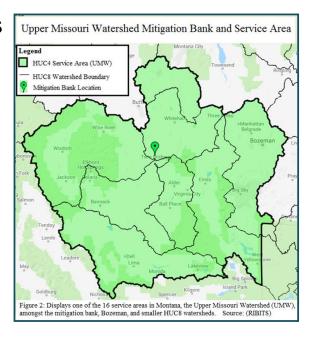



Figure 2. Map of the Gallatin Watershed (GLWQD, 2017).

Current Issues for Bozeman's Wetlands

- Ten acres of wetlands lost within the city limits in the past few months.
- Those wetlands were replaced in Twin Bridges, over 90 miles away.



Current Mitigation Practices

- Mitigation Sequence
- Compensatory mitigation
 - Mitigation Banks
 - o In-Lieu Fee
 - On Site Mitigation by Permittee

Issues:

- Mitigation projects tend to skip over "avoidance"
- Monitoring
- Compliance / Loose Wording
- Scale of relocation most important

Localizing Wetland Mitigation

- Important to consider the scale of mitigation - impacts on the community and on local wildlife
- EPA emphasizes taking a 'watershed' approach: the more localized, the better!

Localized Mitigation: Retaining Ecosystem Services

- Loss of hydrologic services that serve the community
 - Water quality
 - Availability
 - Storage
- This puts more pressure on local water treatment facilities!
- Wildlife relocation
 - Up to 43% of threatened and endangered species rely on wetlands (USFWS)

Localized Mitigation: Other Factors

- There are different types of wetlands that serve several different functions; they are complex ecosystems!
- Natural wetlands are ideal reference sites.

Why is Avoidance Overlooked?

Critical Factors:

- a. Lack of agreement on what constitutes "avoidance";
- b. Wetlands not identified/prioritized in advance of development;
- c. Wetlands are economically undervalued;
- d. Belief that technology can solve problems in the natural world;
- e. Requirements for compensation inadequately enforced

Unified County-Wide Critical Areas Ordinance

- Bellingham, Washington example
- Guidance for protecting wetlands necessary to maintain public health, safety, and welfare
 - o Buffer area

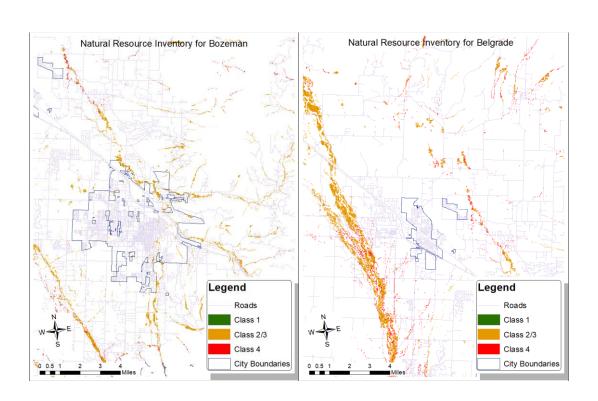
Wetland Assessment Guide

- Identify wetland sensitivity, rarity, and functions
- WA State Assessment Guide
 - o 4 Categories based on functional score
 - Lower category wetland emphasizes highest need for protection
- Help local agencies/governments protect/manage wetlands

Potential Wetland Classification

CATEGORY 1

 Critical habitat of threatened/endangered, fish or wildlife


CATEGORY 2/3

Occurrences of rare or important species to Montana

CATEGORY 4

Two acres or less in size

Proposed Buffer Widths for Bozeman Wetlands

Class	Proposed Buffer Zones (ft)	Replacement Ratios
1	200-300	6:1
2		Forested 3:1
		Scrub-Shrub 2:1
3	50-200	Emergent 1:5:1
3	30-200	Linergent 1.5.1
4	25-50	1.25:1

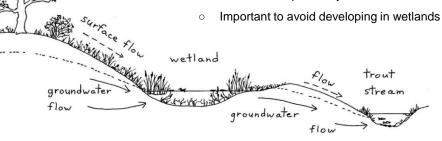
Recommendations for Bozeman

- Enforce avoidance
- Push for localized mitigation
 - Better performance/likelihood of meeting compliance standards
 - o Better reference site
 - Socioeconomic benefits
- Mitigate at a HUC10 rather vs HUC4
- Critical Area Ordinance
- Wetland Rating Assessment

Land Use Planning in Gallatin County

Laura Mooney Eric Stratton Brody Wallace

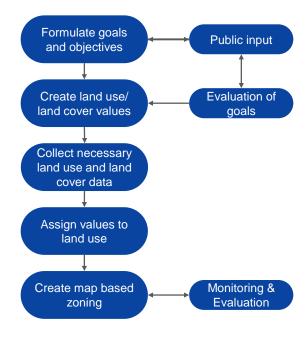
Development in Bozeman


Gallatin Valley, 1984

Gallatin Valley, 2016

Why is this important?

- Bozeman is growing! (U.S. Census, 2017)
 - As impervious coverage increases, surface runoff increase, and there is a decrease in infiltration (Arnold et al., 1996)
 - We are more stressed for water as population increases and runoff carries nutrients + pollutants
 - 14 tributaries do not meet water quality standards (Bullock et al., 2013)
- Wetlands have unique ecosystem services



How do we maximize development while minimizing disturbance?

- Land Disturbance Index (LDI)
 - Assigns numerical values to different land classes
 - Allows for assessment of environmental quality over a spatial scale
 - Determine areas that need most protection and which can be developed

LDI Scoring Table

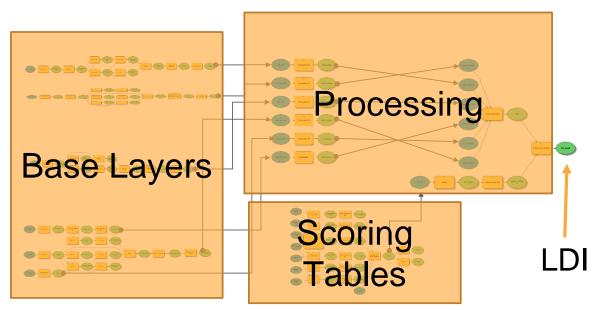
Soil			
Farm Class	fafowet	fa	fowet
all areas are prime farmland	100	100	50
farmland of local importance	100	100	50
farmland of statewide importance	100	100	50
not prime farmland	0	0	0
prime farmland if irrigated	50	75	25

Land Cover			
Land Class	fafowet	fa	fowet
open water	100	100	100
developed, open space	75	75	75
developed, low intensity	50	50 25	50 25
developed, medium intensity	20		
developed, high intensity	0	0	0
barren land	50	0	0
deciduous forest	100	50	100
evergreen forest	100	50	100
mix forest	100	50	100
shrub/scrub	100	50	100
herbaceous	100	50	100
hat/pasture	50	100	0
cultivated crops	50	100	0
woody wetlands	100	25	100
emergent herbaceous wetland	100	25	100

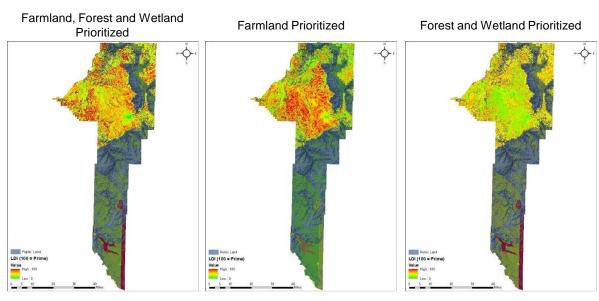
fafowet = Farmland, Forrest and Wetland Prioritized

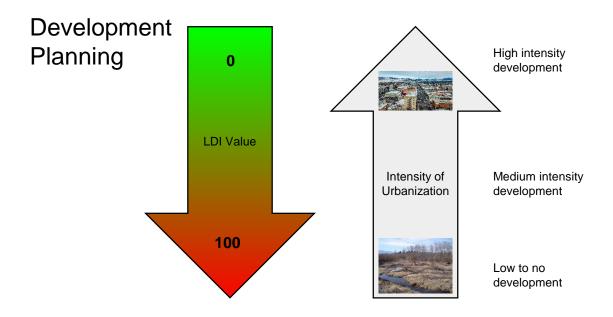
fa = Farmland Prioritized

fowet = Forrest and Wetland Prioritized

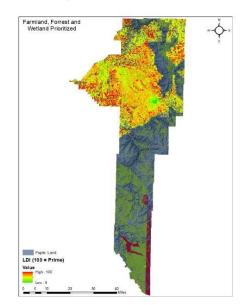

Cities				
Buffer	fafowet	fa	fowet	
0	0	0	0	
100	25	25	25	
250	50	50	50	
500	75	75	75	

Wetlands				
Buffer	fafowet	fa	fowet	
0	100	50	100	
60	75	37	75	
165	25	12	25	


Roads_other				
Buffer	fafowet	fa	fowet	
7	0	0	0	
15	25	25	25	
30	50	50	50	
60	75	75	75	

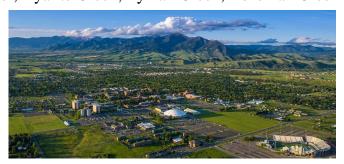

Roads I-90					
Buffer	fafowet	fa	fowet		
80	0	0	0		
100	25	25	25		
250	50	50	50		

LDI - A GIS Model


Three Scenarios

Farmland, Forest and Wetland Prioritized

Questions?


Urbanization and Groundwater in Gallatin Valley

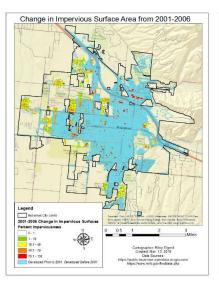
Riley Elgerd, Edison Meece, Megan Tomczyk, Taylor Zabel

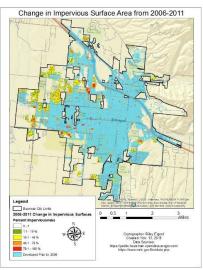
Problem

- Although Gallatin Valley has multiple water sources, it is predicted to have shortage of water within the near future
- In 2017 Bozeman averaged an average annual growth at 3.67 percent
- Gallatin River, Hyalite Creek, Lyman Creek, Bozeman Creek

Why is Groundwater important?

- Resource for agriculture, residences, and industry
- Belgrade's water source is groundwater
- Potential future for Bozeman's municipal water supply
- Groundwater is highly connected to surface water
 - Maintains baseflow in streams
 - "...Virtually all of the groundwater beneath the valley discharges to the Gallatin River and its tributaries" (Kendy, Eloise & Bredehoeft, John D., 2006)


Questions


- 1) How will changes in surface cover from development affect water movement and groundwater recharge?
- 2) How do changes in irrigation methods affect recharge of groundwater?
- 3) How can groundwater pumping and the addition of exempt wells across the Gallatin Valley affect groundwater levels?

Changes In Land Surface Cover

- Changes in land cover classifications were assessed for 2001, 2006, and 2011.
- Increase in 1,600 acres (12.5%) of developed land over the 10 year analysis.

Weighted Curve Number: Runoff Simulation

- Curve Number is a coefficient of runoff based on impervious surface by area.
 - Ranges from 30 (high permeability) to 100 (totally impervious)
 - Used to determine runoff as percent of storm event.
- CN increased as impervious area increased!

2001: 79.172006: 79.92011: 80.21

$$Q = \frac{(P-I_a)^2}{(P-I_a) + S}$$
 (1)
$$Q = \text{runoff (in)}$$

$$P = \text{rainfall (in)}$$

$$S = \text{potential maximum retention}$$

$$\text{after runoff begins}$$

$$I_a = \text{initial abstratctions}$$

$$I_a = 0.2 \text{ S}$$
 (2)
$$Q = \frac{(P-0.2 \text{ S})^2}{(P+0.8 \text{ S})}$$
 (3)
$$S = \frac{1000}{\text{CN}} - 10$$
 (4)

Source: https://engineering.purdue.edu/mapserve/LTHIA7/documentation/scs.htm

Runoff as Impervious Surface Increases

- For simulating runoff, an average precipitation of 3 storm events from June of 2001, 2006, & 2011 was used
 - o Simulation precipitation: 1.24 inches
 - Increase in 8 million gallons of runoff in 10 years!!!
- As Runoff increases, groundwater recharge decreases.
 - This is water that previously would have infiltrated to aquifer that is now being lost.

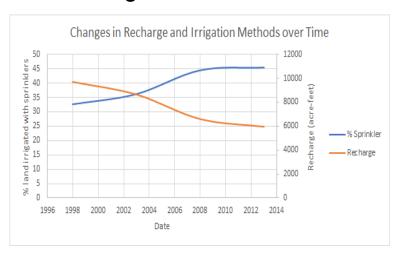
Year	Runoff (gallons)	Runoff (acre-ft)	% Runoff of Total Volume
2001	54,648,700	167.7	12.35%
2006	58,414,900	179.2	13.20%
2011	62,168,900	190.7	14.05%

Irrigation Model

- Provides an estimation of the amount of water used by irrigation in Gallatin County
- Takes into account the main sources of recharge including soil infiltration, percolation and surface runoff
- Irrigation data was obtained from USDA agricultural census
 - o Censuses were from 1998, 2003, 2008, 2013

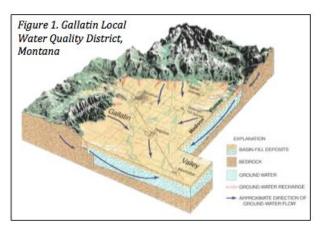
Established Hydrologic Model

 $Tw = \sum [(AiRi) - Rc]$


 $Rc = \Sigma ((AiRi(1-Ei))-Eo)+Gri)$

Eo = (700 Tm/(100-A) + 15(T-Td))/(80-T)

 $Gr = \Sigma(((AiRiEi)*Ml*D)-St)$


Shift in Irrigation Methods Effect on Recharge

- An increase in sprinkler irrigation is correlated with a decrease in recharge
- Increase in sprinkler irrigation significantly affects the total amount of water being applied to the fields
- No significant change to total amount of water used overall

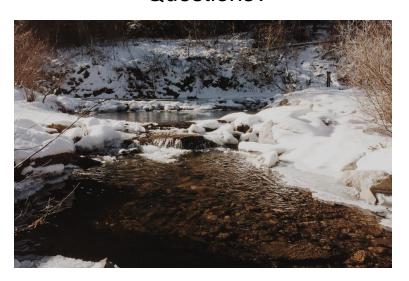
Groundwater Pumping

- As Montana's population increases, so has the number of exempt wells drilled each year
- Surface water and groundwater
 Correlate: surface body either
 Drains or recharges water table
- In 1993 the Upper Missouri Basin was legislatively closed to any new surface water appropriations

Summary

- As impervious surfaces increase, runoff will increase and groundwater recharge will decrease - storm events are a big loss
- As irrigation becomes dominated by sprinkler systems (less flood irrigation), groundwater recharge will decrease
- As more exempt wells are constructed, groundwater will be utilized and levels will decline

GROUNDWATER LOSSES (3 SOURCES)!

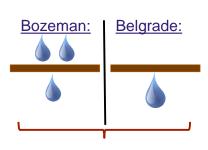

Recommendations

- Quantify water use in Gallatin Valley:
 - Water applied in irrigation from groundwater and surface water
 - Water used per exempt well to quantify withdrawals (audits)
- Stormwater detention ponds below proposed stormwater treatment sites
 - o Lower stream discharge during storm events
 - Green Infrastructure
- Groundwater Mitigation
 - Artificial recharge with return pumping
 - Practice of augmentation

http://www.anglerguide.com/montana/gallatinriver.html

Questions?

Low-impact development in the Gallatin Valley

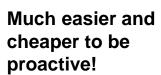

Mitigating urbanization pressures on natural resources

Betsy French, Noelani Boise, Frida Isaksen-Swensen, Nick Bragg, Stephanie Neises

Multiple components...

Different water sources require different methods of management

Green Infrastructure



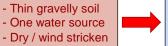
Incorporation of natural elements and operations into urban infrastructure

Green Infrastructure: Benefits

- Reduce costs of urban growth
- Increase natural capital
- Increase population potential as well as resilience of the urban system

Green Infrastructure

Montana State Fund Building (Helena)


Denver Housing Authority

Rapid City

Urban Vegetation of Belgrade

Plants Selected:

- 1. Native
- Tolerant of known conditions

Planting Native:

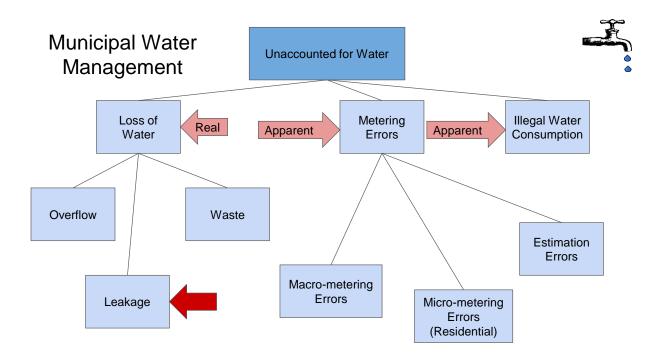
Xeriscaping:

Landscaping that involves little to no irrigation.

Cuts down on...

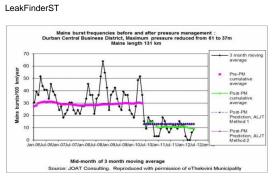
- -Water 50%
- -Maintenance & labor 30%
- -Fertilizers 61%
- -Fuel 44%
- -Herbicides & pesticides 22%

Urban Ecology:


Maintaining food webs and species interactions in an urban setting.

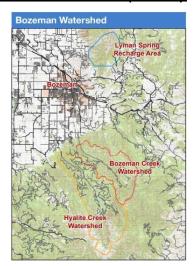
Encouraging Community Involvement:

Incentives and Rewards National Wildlife Federation National Audubon Society



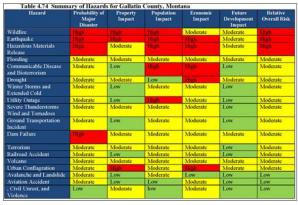
Tools for Reducing Real Water Loss

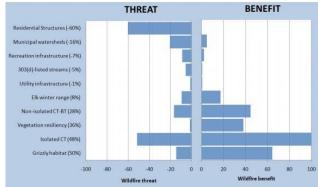




Pressure Management

Fire, Water, & The Wildland-Urban Interface (WUI)




Gallatin County Emergency Management

City of Bozeman

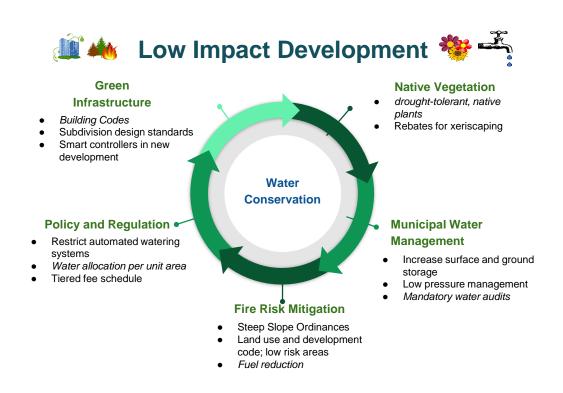
Gallatin County Emergency Management

Pyrologix

Fire, Water, & The Wildland-Urban Interface (WUI)

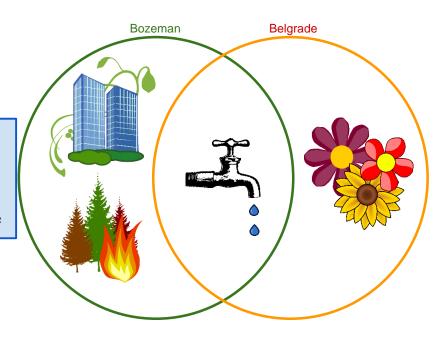
Prospective actions to mitigate risk:

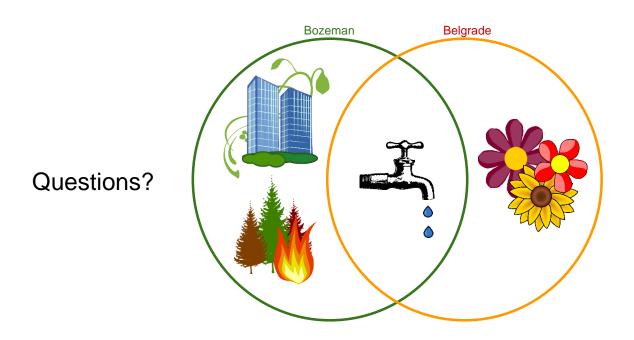
- Do nothing (but we want to be PROACTIVE).
- Bozeman Municipal Watershed Fuels Reduction Plan
- WUI fuel thinning.
- Increase municipal water storage.
- Municipal groundwater source.



Pine Creek Fire, Park County, MT. Headwaters Economics.

Current Policy


- Bozeman City Ordinances
 - "All landscaped areas shall be perpetually maintained in a healthy condition"
 - "include one large canopy tree for each 50 feet of total street frontage"
 - "at least 75 % coverage of an area with natural grass, vegetative ground cover or other natural living plant materials"



Solution:

- Combination of all methods
- Strategies guided by strengthened policy
- Proactive vs Reactive

