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Introduction 
  
My students and I have studied hot spring microbial mat communities in Yellowstone National Park 
since 1977 (Fig. 1).  We study them as models of microbial community ecology addressing primarily 

questions about the composition, 
structure and function of the 
community.  Microscopically, it 
appears that that community 
structure is simple: a single, sausage-
shaped cyanobacterium 
(Synechococcus sp. revealed by the 
red autofluorescence of the 
chlorophyll a they contain) appears to 
build the community together with 
filamentous bacteria resembling 
green nonsulfur bacteria 
(Chloroflexus sp.).  This simple 
picture of community structure was 
reinforced by the fact that readily 
cultivated Synechococcus and 
Chloroflexus strains appeared to have 
limited genetic diversity, as expected 
of single species.  Since I was a 
graduate student I have been 
concerned that the simple 
morphology of microorganisms might 
mask an underlying greater 
diversity.  Furthermore, I doubted 
that the extremely selective nature 

of laboratory cultivation techniques would make it useful for describing the composition of 
microbial communities in an unbiased way.  In 1984 I took a sabbatical leave with Norman Pace to 
learn molecular methods for cultivation-independent analysis of diversity within a microbial 
community.  As a result, we have been able to develop approaches to demonstrate that this 
community is not as simple as it first appears. 

Figure 1. Green hot spring microbial mats occur below ca. 74°C 
(a).  The top green layer (b) is comprised of filamentous green 
nonsulfur-like bacteria and unicellular cyanobacteria, 
Synechococcus (c) that form distinct layers of different 
autofluorescence intensity in the top 1 mm (d). 



Molecular analysis of community composition and structure 
 

In the mid-1980s we began to develop and use methods for examining the genetic variation 
exhibited by the gene encoding 16S ribosomal RNA molecules, using the strategy depicted in 
Figure. 2.   DNA is extracted from mat samples, then PCR amplified to produce a mixture of 16S 
rRNA sequences from community members.  These are separated by cloning or gel methods called 
denaturing gradient gel electrophoresis (DGGE) to allow purification of individual 16S rRNA 
sequences.  Purified 16S rRNAs are then sequenced and compared to a large and growing database 
on the evolution of life based on sequence variation in this molecule 
http://rdp.cme.msu.edu/index.jsp.  
 

  

 
Figure 2.  Approaches to 16s rRNA diversity analysis. 

 
 
 



As expected, our community contained 16S rRNA sequences related to cyanobacteria and green 
nonsulfur bacteria, as shown by the blue- and red- highlighted Kingdom-level lineages in the 3-
domain tree.  The three red-highlighted lineages in Domain Eukarya are the traditional Animal, 
Plant and Fungal Kingdoms.  Since line length separating organisms in the tree are proportional to 
genetic difference between the organisms, it is easy to note that microorganisms (all other lines) 
contain much more genetic diversity as assayed by 16S rRNA sequence variation. 

 
Evidence of diversification through adaptive radiation 
  

Fig. 3 shows a tree of 
diversity in cyanobacterial 
16S rRNA sequences, with 
thin lines providing a 
background of diversity 
within this kingdom.  The 
thick lines indicate the 
diverse cyanobacterial 16S 
rRNA sequences we 
detected in a hot spring 
microbial mat.  Clearly, 
the mat contains more 
cyanobacterial diversity 
than meets the eye.  
Again, line lengths 
separating sequences (in 
this case horizontal 
component only) equate 
to genetic differences.  
The readily cultivated 
sequence (Isolate OS C1, 
S. lividus) is unrelated to 
the predominant ones, 
which comprise a set of 
closely related sequences 
we call A/B types.  The 
difference between type 
C1 and the A/B types is 

very large, certainly representing different species, but more likely representing differences on the 
same scale as the difference between flowering plants and ferns! But, what about the closely 
related sequences of the A/B group?  By studying the distribution of these genetic variants along 
ecological gradients, we learned that even the most closely related sequences appear to 
correspond to ecologically distinct cyanobacterial populations.  Fig. 4 shows different A/B 
genotypes at different temperatures and depths.  Note the progression of genotypes from B to B’ to 
A to B’ to A’’ from low to high temperature and the subsurface position of genotype A 
corresponding to pigment-rich Synechococcus 400-700 µm below the mat surface.  We are currently 
examining pure cultures of A/B lineage Synechococcus to evaluate whether, as predicted from 
distribution studies, these are temperature- and light-adapted ecological populations.  Together 
with evidence from other laboratories, it seems clear that, like plants and animals (e.g., Fig. 5), 
prokaryote diversity is acted upon by natural selection to yield ecologically specialized 
populations.  We term these populations ecotypes, but they can be taken as species if an ecological 
concept of species is applied. [Ward, 1998; Ward et al., 1998, 2002] 

 Figure 3.  Cyanobacterial 16s rRNA phylogeny.  Mat sequences are 
bold-highlighted.  Inset shows ITS variation within 16s rRNA genotype 
B'



  
  

 

 
Figure 4.  DGGE gels showing progression of A/B cyanobacterial 16s rRNA genotypes along a thermal gradient and 

along a vertical gradient at a 60°C site. 
  

 
Figure 5.  Galápagos finch diversity arose from an ancestral mating pair via adaptive radiation to fill unoccupied 

niche space. [Begon et al., 1990] 
 



Have we detected all the ecotypes? 
  
We have determined that the 16S rRNA gene may be too conserved to enable us to detect all 
ecologically distinct populations within microbial communities.  At a 68°C site, we also see distinct 
differently pigmented Synechococcus populations near the mat surface and at depth.  However, we 
can detect no difference in depth in 16S rRNA sequence.  We developed an approach to PCR 
amplify the faster-evolving internal transcribed spacer (ITS) region adjacent to the 16S rRNA gene 
and used  it to show that genotypes found at the mat surface (●) are genetically distinct from those 
in the mat subsurface (■) (Fig. 6). [Ferris et al., 2003] 
 

 
 

Figure 6. Top: PCR approach to amplification of 16s rRNA gene and adjacent internal transcribed spacer.  Lower 
left: Vertical section of 68°C Mushroom Spring mat with autofluorescence microscopy images of surface and 
deeper layers.  Lower right: Unrooted ITS phylogeny for cyanobacterial sequences of a single 16s rRNA type 

detected in the top layers (circles) or deeper layers (squares). 
 

 
 
 
 
 



Evidence of diversification through geographic isolation 
 
Since bacterial diversity seems to arise through adaptive radiation, it seemed of interest to 
examine whether the other major driver of speciation in plants and animals, geographic isolation, 
was important to prokaryote diversification.  Considering hot springs to be like islands, we sampled 
springs in Japan, New Zealand and Italy in 
addition to North America.  We retrieved 
sequence data for both the 16S rRNA and ITS loci 
of indigenous cyanobacteria (Fig. 6) directly from 
the mats we sampled.  We found unique 
cyanobacterial 16S rRNA genotypes in each 
location, as shown in Fig. 7.  The A/B type 
Synechococcus sequences appear endemic to 
North America (red and pink for OR).  Japan 
(blue) was dominated by C1-lineage 
Synechococcus, which were also found in North 
America.  New Zealand (green) was dominated by 
C9-type Synechococcus and Oscillatoria 
amphigranulata sequences.   In many cases we 
observed distinct clades for different 
geographical regions.  The geographic 
distribution pattern could not be explained by 
different chemical conditions, suggesting that 
geographic isolation is involved in diversification 
of hot spring cyanobacteria.  We even found 
evidence of geographic clades at more local 
spatial scale (e.g., within major thermal basins of 
Yellowstone Park.  Together with similar results 
from other laboratories, it appears clear that, 
like plants and animals (Fig. 8), geographic 
isolation also acts upon prokaryote variation to 
cause diversification. [Papke et al., 2003]  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 8.  Distinct flightless birds on different 
continents exemplify diversification through 
geographic isolation. [Begon et al., 1990] 

Figure 7.  Cyanobacterial 16s rRNA diversity detected in 
globally separated hot spring mats of North America (OR),
Japan, and New Zealand.  A/B, C1, and C9 lineages are 
Synechococcus spp. 



Current Research 
  

After observing these patterns 
of diversity and its distribution 
and their correspondence to 
ideas about plant and animal 
speciation, I took a sabbatical 
leave in 2000 to the lab of Fred 
Cohan to learn about 
evolutionary theory.  The 
empirical results we observed 
in our studies match well with 
periodic selection theory 
[Cohan, 2002] (Fig. 9).  The 
idea is that populations, which 
have variation, evolve through 
a succession of periodic sweeps 
of diversity.  One most-fit 
variant out-competing all 
others and carrying forward the 
genetic know how to occupy 

the population’s niche.  However, whenever a variant arises which has a novel ecology (occupies a 
different niche than the parental population) it is no longer selected in the same way (i.e., survives 
periodic sweeps of the parental population).  It is then free to diverge from the parental 
population, giving rise to a new population which undergoes its own private periodic sweeps.  The 
eventual result is two ecologically distinct populations.  Geographic isolation can have the same 
effect as ecological adaptation in driving populations apart.  Fred has shown that a high-resolution 
molecular technique for analyzing population genetics has potential to detect these terminal 
ecotypical clusters.  The method, called Multi-Locus Sequence Typing (MLST), involves PCR 
amplification of 7 rapidly evolving protein encoding genes and sorting variants into clonal 
complexes.  Fred has developed an evolutionary simulation that suggests that MLST clonal 
complexes equate to putative ecotypes.  In a project sponsored by the NSF Frontiers in Integrative 
Biological Research (FIBR) and NASA Exobiology Programs, Fred and I plan to develop a cultivation-
independent MLST approach to study, at very high resolution, Synechococcus ecotypes within the 
mat.  As a part of the FIBR project, we will collaborate with John Heidelberg of the Institute for 
Genomic Research (TIGR)  to obtain genomic sequences of two Synechococcus isolates that are 
genetically relevant to the mats we study.  John will also conduct direct environmental genomic 
analysis of predominant mat populations, as a theory-independent means of investigating how 
genomic diversity may be organized into populations.  Genomic sequence data will permit us, in 
collaboration with Devaki Bhaya and Arthur Grossman (Carnegie Institution/Stanford), to develop 
microarrays that will be used to investigate gene expression in situ within the mats.  Ultimately, 
we hope to compare the distributions of allelic variants of highly expressed genes, with alleles that 
mark MLST clonal complexes (putative ecotypes). 

 
  

 
 
 

Figure 9.  Periodic Selection Theory.
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