COVER CROPS AND SOIL HEALTH

MI Organic Association Bozeman December 4, 2015

Clain Jones clainj@montana.edu 994-6076

MSU Soil Fertility Extension

Cover crops:

- A. Teach us how to use clickers
- B. Can keep you warm at night
- C. Build strong worms
- D. Are yummy if you are a cow

What brings you to the workshop today?

- A. Farm management (mainly cash crops on 100+ acres)
- B. Ranch management (mainly livestock on 100+ acres)
- C. Small acreage farm/ranch management (<100 ac)
- D. Job with state or federal government
- E. Job as crop adviser
- F. Interested citizen

Today's goals

- Present potential benefits of cover crops
- Discuss cover crop effects on
 - Nitrogen
 - Soil organic matter
 - Temperature, aggregate stability, microbial activity
 - Following crop yield and protein
 - Economics
- Present management considerations with cover crops

Do you, or have you grown cover crops?

A. YesB. No

Response Counter When have you used cover crops? Select all that apply.

Α.	As a late summer to	25%
	fall cover	

- **B.** As a winter crop 25%
- C. As a spring-summer 25% crop
- D. Other 25%

How familiar are you with cover crop mixtures?

A.	Never heard of them	20%
Β.	Minimal knowledge	20%
C.	Quite familiar but never tried	20%
D.	Tried but not likely to use again	20%
Ε.	Tried and will continue to	20%

What is the average number of species in your cover crop?

A. 1
B. 2 - 3
C. 4 - 5
D. 6 - 7
E. 8 or more

Benefits and challenges of cover crops

Soil Quality vs Soil Health

<u>Soil Quality</u> = properties that change little, if at all, with land use management practices

- Texture
- pH
- Cation Exchange Capacity

Which is more likely to be influenced by cover crops?

Soil Health = dynamic properties which may be subjective to measure

- Aggregation
- Microbial activity
- Tilth
- Nutrient availability
- Water holding capacity
- Compaction

What we have found with MT research trials

MSU single species cover crop research since 1999 has found higher grain yields and/or protein after cover crops when:

- 1. Seeding winter legumes (vs spring legumes)
- 2. Seeding spring cover crops early (vs late)
- 3. Terminating at first bloom (vs pod)
- 4. Tilling cover crop (vs spraying)

Why?

- More N fixed (1)
- More time for soil water to be recharged and N to become released from residue (1, 2, 3)
- Faster N release and fewer N losses (4)

Our MT studies confirmed early Saskatchewan studies that termination timing is key

Terminating legume cover crop at early bloom produced higher **organic wheat yields** the following year than terminating at flat pod in 2006-2007

(Miller et al. 2011)

Questions?

Cover Crop Cocktails Plot Study

- 1. Compare crop and soil response to fallow, single species pea CC, and multi-species mixtures
 - Cover crop and wheat: Biomass, biomass quality, yield
 - Soil:
 - Microbial biomass
 - Soil enzyme activity
 - Soil temperature
 - Aggregate stability
 - Compaction

- Soil water, nitrate, and Olsen P
- Mycorrhizal colonization
- Potentially mineralizable nitrogen

- 2. Determine the specific effects of 4 plant functional groups
- 3. 2 sites in Triangle, 2 in Gallatin Valley

Plant functional groups – planted individually and in groups

Nitrogen Fixers

Spring Pea Common Vetch Lentil Increase nitrogen

Add soil carbon

Fibrous Root

Oats Italian ryegrass Proso millet Reduce compaction, move nutrients upward

Potential disease control

<u>Tap Root</u>

Purple top turnip Safflower

<u>Brassica</u>

Daikon radish Winter canola Camelina

Lessons learned about plantings

Photo: Susan Tallman

- Early weed control essential
- Common vetch difficult to terminate w/ glyphosate
- Camelina, Italian ryegrass, and lentil not competitive
- Radish bolts in late spring
- Millet not competitive in mid-spring mix
- Possible biological control benefits of wheat-stem sawfly with oat and radish

Cover Crop Biomass – depends on moisture

2012

2014

Amsterdam 0.4 ton/acre

Conrad 0.2 ton/acre

Photo: Steve Spence

Amsterdam 1.4 ton/acre

Conrad 1.0 ton/acre

Photo: Meg Housman

Spring wheat yield at Dutton vs previous year total biomass (cc + weed)

Cover Crop + Weed Biomass (ton/acre)

Housman, Tallman, et al., unpub data, Dutton

What about soil health?

Potentially Mineralizable Nitrogen – 1st year

Tallman, Housman, et al., unpub data

Microbial Biomass – 1st year

Tallman, Housman, et al., unpub data

Soil temperature at 2" deep much higher under fallow than cover crops (but no differences between pea and full)

Summary after FIRST full rotation

	Amsterdam	Conrad	Dutton	Bozeman
CC Biomass	ns	ns	ns	ns
Biomass C:N	8 spec>Pea	ns	8 spec>Pea	ns
Microbial Biomass	ns	ns	CC>fallow	CC>fallow
PMN	CC>fallow	Pea>6 spec	CC>fallow	Pea>8 spec,fall.
Olsen P	ns	ns	ns	ns
Temp at 2"			CC <fallow< td=""><td>CC<fallow< td=""></fallow<></td></fallow<>	CC <fallow< td=""></fallow<>
Aggregate stability	ns	ns	ns	ns

ns – no significant difference (95% confidence) among any treatments (meaning pea vs 8 spec OR fallow vs cover crops)

Summary after SECOND full rotation

	Amsterdam	Conrad
Cover crop biomass	6 spp. > 2 spp.	ns
Microbial Biomass	CC>fallow	ns
Microbial Enzymes (5)	CC>fallow	ns
PMN	CC>fallow	ns
Olsen P	ns	ns
Temp at 2"	CC <fallow< td=""><td>CC<fallow< td=""></fallow<></td></fallow<>	CC <fallow< td=""></fallow<>
Aggregate stability	ns	ns

ns – no significant difference (95% confidence) among any treatments (meaning pea vs 8 spec OR fallow vs cover crops)

Cover Crop Cocktails Plot Study: Take home messages on yield and soil quality

- After one cycle, spring wheat grain yields higher after pea and N fixers than most other mixes.
- Higher cover crop biomass correlated with lower spring wheat yield, likely b/c of more water and N use.
- Relatively few soil health differences between pea and 8-species mix after one cycle; not unexpected.
- After two cycles, no soil health differences between pea and 8-species mix, but CCs increased microbial activity.

Questions?

Cover Crop Cocktails Farm Study: Spring wheat yield after mixed CC, Gallatin Valley

Percent legume and termination timing affects plant available N (PAN)

Cover Crop Cocktail Farm Study: 1 rotation of mixed CC reduced grain yield in 4 of 6 production years

Location and Year

Yield less after mixed cover crops on farmers' fields, likely due to late termination and high water & N use by CCrop

Cover Crop Cocktail Farm Study: 1 rotation of mixed CC produced varied grain protein results

Cover Crop Cocktails Farm Study: Take home messages on yield and protein

- Spring wheat grain yield was lower after CC than fallow in four of six field-scale studies, and protein results were mixed.
- High water use from late termination was likely cause of yield differences.
- Low N availability from late termination & low legume % was likely cause of protein differences.

Questions or Comments?

Not a stellar outlook for cover crops in short term, what about long term? 8-year plot study

Legume or fallow year

Wheat yield 2004 CC = Fallow 2006 CC = Fallow 2008 CC = Fallow 2010 CC > Fallow 2012 CC = Fallow

Wheat year

Soil water generally not limiting, except 2012

8 Year Plot Study: Grain yield in 8th year (2010)

8 Year Plot Study: Grain protein in 8th year

Potentially mineralizable N (PMN) Cover crop-wheat vs fallow-wheat (April of 8th yr)

After 4 rotations pea GM provides same net return as fallow, with less N

Miller et al., 2015

- In the first 3 cycles, wheat grain yield was not higher after legume than after fallow.
- After 4 two-year cycles, wheat grain yield and protein were higher after legume CC than after fallow.
- Higher than normal precipitation in 2010 likely 1) increased release of available N from an increased organic N pool, and 2) made N limiting to growth.
- Over 100 lb N/ac was saved in 2010 following legume cover crop compared to fallow!
- Economic returns were more stable with cover crop (less dependent on N rate)

Questions?

Cropping system effects on soil N after 6 years (MSU Post Farm)

SOM input = a function of biomass input

- Residue decomposition rate varies with climate, tillage, soil type, etc.
- Potential SOM input depends on biomass produced regardless of soil and site conditions

Fisher et al., 2007, Australia irrigated systems

Plant biomass to produce SOM requires nutrient inputs

From 2000 to 2012, MSU Post Farm

Organic received no inputs

Organic rotation = legume GM/Wwheat/Lentil/Barley or Safflower

Approximately how many years are you willing to invest in cover crops before getting a financial return?

- A. 0
- B. 1
- **C**. 2
- D. 3
- E. 4
- F. 5+

Have your cash crop yields changed as a result of cover crop use?

- A. No
- B. Yes, increased
- C. Yes, decreased

Legume cover crops: They take time to influence subsequent wheat yield

Allen et al., 2011, Culbertson

Pulse/legume rotations benefit protein before yields

Economic options

Do you graze cover crops?

- A. Yes
- B. No

- Grazing may provide more immediate economic return and increase the rate of change in soil health. Currently under study at MSU-Northern.
- NRCS provides incentives for growing cover crops

Questions?

Organic rotation = legume GM/Wwheat/Lentil/Barley or Safflower

Manure

- Tilled in ~9 tons/acre aged manure prior to seeding winter wheat on one ORG plot 2009.
- = 75 lb TOTAL P_2O_5 /acre ≈ 400 lb TOTAL N/acre

Effect of manure on 2010 winter wheat grain yield

Post Farm, Bozeman Miller, unpub data No effect on grain protein

Conclusions

- In short term (1 CC-cycle studies), grain yield and protein are generally equal or less than after fallow.
- Early termination (by ~ first pea bloom) is key to preventing yield and protein losses.
- In short term studies, there does not appear to be yield or soil quality advantages of multiple species mixes over pea.
- In long term (4+ cycles), yield, protein, and net revenue can be higher after cover crops than fallow, especially at low N rates, likely from more available N.
- Cover crops provide resilience to uncontrollable factors such as weather and markets
- Cover crop value to soil health, subsequent crops, and possibly land value is expected to increase over time.

Is your management likely to change, based on what we have presented today?

A. YesB. No

Acknowledgments

- USDA AFRI
- USDA WSARE
- NRCS CIG
- Montana Fertilizer Advisory Committee
- Montana Wheat and Barley Committee
- Numerous landowners
- Ann McCauley
- Jeff Holmes
- Anton Bekkerman
- Mac Burgess

For a pdf version of this presentation and additional information on cover crops and soil fertility, see http://landresources.montana.edu/soilfertility

QUESTIONS