MSU-Bozeman Cover Crop Research

NPARL Focus Group Meeting

November 24, 2014

Clain Jones (994-6076; clainj@montana.edu), Cathy Zabinski, Anton Bekkerman, and Perry Miller (994-5431; pmiller@montana.edu)

Dept. Land Resources & Environmental Sciences

Today's objectives

- Summarize past cover crop research findings of the MSU Cropping Systems group
- Present results from recent and ongoing MSU cover crop studies

MSU single species cover crop research since 1999 has found higher grain yields and/or protein after cover crops when:

- **1.** Seeding winter legumes (vs spring legumes)
- 2. Seeding spring cover crops early (vs late)
- 3. Terminating at first bloom (vs pod)
- **4.** Tilling cover crop (vs spraying)

Why?

More N fixed (1)

More time for soil water to be recharged and N to become released from residue (1, 2, 3)

Faster N release and fewer N losses (4)

Questions still to be answered

- Do cover crop mixtures improve yield, protein, and soil health more than single species?
- Do yield and soil health benefits increase with number of cover crop cycles?

Study 1: Cover crop cocktails, one 2year cycle, four site years

- Objective: Determine effects of "functional groups" within mixed cover crops on yield and soil health
- 2 sites in Triangle (Dutton and Conrad), 2 sites in Gallatin Valley (Amsterdam and Bozeman)
- ^{2nd} cc cycle at Conrad and Amsterdam was completed in 2014 (but no soil data yet)
- Full field component as well

Methods

Study Sites

3 on-farm conventional 1 university land

3 yr minimum no-till

Year	Amsterdam, Conrad	Bozeman, Dutton
2012	cover crop	
2013	wheat	cover crop
2014	cover crop	wheat
2015	wheat	cover crop

Plant Functional Groups & Species

Fallow

Pea

Full (8 species)

Nitrogen Fixers

Fibrous Roots

Tap Roots

Brassicas

Minus Nitrogen Fixers

Minus Fibrous Roots

Minus Tap Roots

Minus Brassicas (no turnip)

All photos: Steve Spence; Amsterdam, 14 June 2012

2013 Cover Crop Biomass

Pea Lentil Oat Millet Safflower Turnip Radish Winter Canola

Effect of cover crop treatment on spring wheat grain yield at Dutton (2014)

Percent legume and termination timing affects plant available N (PAN)

Effect of cover crop treatment on spring wheat grain yield at Dutton (2014)

Spring wheat yield at Dutton vs previous year total biomass (cc + weed)

Preliminary Results

Microbial Biomass

Large soil temperature differences among treatments

Dutton Soil Temperature (2" Deep) 2013

Summary after first full rotation

	Amsterdam	Conrad	Dutton	Bozeman
CC Biomass	ns	ns	ns	ns
Biomass C:N	8 spec>Pea	ns	8 spec>Pea	ns
Microbial Biomass	ns	ns	CCrop>fallow	CCrop>fallow
PMN	CCrop>fallow	Pea>MFR	CCrop>fallow	ns
Olsen P	ns	ns	Not analyzed	Not analyzed
Max daily temp			fallow>CCrop	fallow>CCrop
Penetration resistance*	ns	Pea>MFR	ns	ns

ns – no significant difference between 8 species (full mix) and pea
* - penetration resistance less for fallow than CCs at Dutton and Conrad, likely due to higher water content, not less compaction so only CCs compared.

Study 1 : Take home messages on yield and soil quality

- After one cycle, spring wheat grain yields higher after pea and N fixers than most other mixes.
- Higher cover crop biomass correlated with lower spring wheat yield, likely b/c of more water and N use.
- Relatively few soil health differences; not unexpected given only one cycle.

- Objective: Determine long-term effects of legumecontaining rotations vs. fallow on subsequent wheat mainly in no-till.
- ~16 inch annual precip. (4 miles west of Bozeman)

- Unique feature is deep, uniform silt loam soil and relatively abundant winter precip. to recharge soils
- Focus here on no-till pea forage/legume cover cropwheat vs. fallow-wheat
- Pea forage grown in 2003, 05, 07 and pea CC grown in 2009, terminated at full pod
- Spring or winter wheat planted in even years. 2010 was wettest of wheat years, 2012 record drought.
- 2 N rates: Full (3 lb available N/bu) and ½ N
- NO differences in wheat yield between CC and fallow in 2004, 2006, and 2008.

Legume or fallow year

Wheat year

ALL STREET, ST

Study 2: 8 year plot study, Grain yield in 8th year (2010)

*

Study 2: 8 year plot study, Grain protein in 8th year

Study 2 Economics (2009 – 2012)

4 yr Average Discounted Present Value of

- In the first 3 cycles, wheat grain yield was not higher after legume than after fallow.
- After 4 two-year cycles, wheat grain yield and protein were higher after legume CC than after fallow.
- Higher than normal precipitation in 2010 likely 1) increased release of available N from an increased organic N pool, and 2) made N limiting to growth.
- Over 100 lb N/ac was saved in 2010 following legume cover crop compared to fallow!
- Economic returns were more stable with cover crop (less dependent on N rate)

Conclusions

- In short term (1 CC-cycle studies), grain yield and protein are generally equal or less than after fallow.
- Early termination (by ~ first pea bloom) is key to preventing yield and protein losses.
- In short term studies, there does not appear to be yield or soil quality advantages of multiple species mixes over pea.
- In long term (4+ cycles), yield, protein, and net revenue can be higher after cover crops than fallow, especially at low N rates, likely from more available N.
- Cover crop value to soil health, subsequent crops, and possibly land value is expected to increase over time.

Acknowledgments

- USDA AFRI
- USDA WSARE
- NRCS CIG
- Montana Fertilizer Advisory Committee
- Montana Wheat and Barley Committee
- Numerous landowners
- Susan Tallman
- Meg Housman
- Ann McCauley
- Jeff Holmes

Questions?

For additional information on soil fertility topics including information on cover crops, see http://landresources.montana.edu/soilfertility