

COVER CROPS: PAST AND PRESENT RESEARCH AT MSU

Clain Jones, Susan Tallman, Cathy Zabinski, and Perry Miller, Dept of LRES Oct. 19, 2013

Why grow cover crops?

- Decrease erosion
- Decrease leaching
- Increase soil organic matter
- Increase soil quality?
- Improve subsequent yield and protein?

What are the important issues surrounding cover crops?

1. Species selection

- Seeding timing, method, and rate (see Fertilizer Fact sheet 61).
- 3. Weed management
- 4. Termination timing and method
- 5. Effect on subsequent crop/economics
- 6. Soil quality effects
- 7. Cover crop cocktails vs single species cover crops

MSU research on single species cover crops:

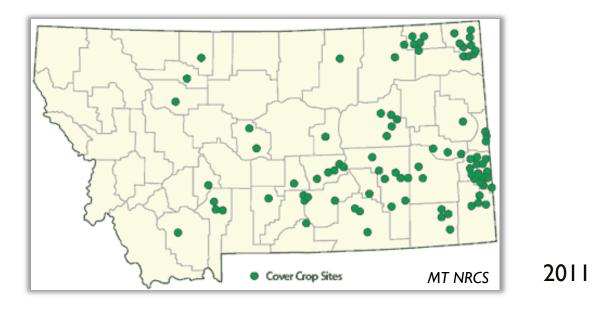
- Most conducted by Perry Miller, largely on annual legumes, in both organic and non-organic systems
- Subsequent grain yields higher when:

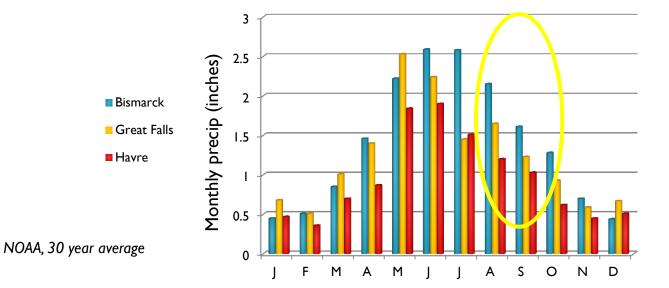
Winter pea grown, vs. spring pea or lentil Spring seeded vs. summer seeded Terminated early (bloom), vs. at pod Tilled (see Fertilizer Fact 58), vs. chem fallow

 Cover crop-wheat is generally less economical than fallow-wheat. Why?

Conclusions on mono cover crops in short- and long-term

- Conserving water is likely most important strategy.
- Benefits to soil and next crop often not observed in two year studies.
- Soil nitrogen (N) availability and some soil quality parameters (potentially mineralizable N and carbon) increase in long-term (8+ years)
- Net revenue likely increases in long-term (though not above pea grown for grain-ww at Bozeman from 2009 to 2012)


Current MSU Research Cover Crop Cocktails


North Dakota and Montana farmers have been trying these cocktails

www.attra.org www.bcscd.com

Can cover crop cocktails work in Montana?

Questions we're attempting to answer in USDA-WSARE study

- 1. Are cover crop mixtures more valuable than single species?
- 2. What mixtures or 'functional groups' have a more positive effect on soil quality?
- 3. What mixtures have a more positive effect on subsequent yield & quality?

Functional Groups & Plant Species

Nitrogen Fixers

Fibrous Root

Spring Pea Pisum sativum

Common Vetch Vicia sativa

Oats Avena sativa

Italian Ryegrass Lolium multiflorum

Tap Root

Safflower Carthamus tinctorius

Purple Top Turnip Brassica campestris

Daikon radish Raphanus sativus **Brassica**

Camelina Camelina sativa

Plot Study: CCM Phase 4 farms including 2 in Golden Triangle

REP 4	401	402	403	404	405	406	407	408	409	410	411
	Minus	Nitrogen	Fibrous	Minus	Full	Тар	Minus	Pea	Brassicas	Fallow	Minus
	Brassica	Fixers	Roots	N Fixers	Mix	Roots	Fibrous				Тар
	8	6	5	10	1	3	9	2	4	11	7
	301	302	303	304	305	306	307	308	309	310	311
REP 3	Minus	Nitrogen	Minus	Minus	Pea	Brassicas	Full	Minus	Тар	Fallow	Fibrous
	Fibrous	Fixers	Brassica		2	4	Mix	N Fixers	Roots	11	Roots
				Тар	2	4				11	
	9	6	8	7			1	10	3		5
	201	202	203	204	205	206	207	208	209	210	211
	Pea	Brassica	Minus	Full	Minus	Fallow	Minus	Fibrous	Тар	Nitrogen	Minus
REP 2	2	4	N Fixers	Mix	Тар	11	Fibrous	Roots	Roots	Fixers	Brassica
	L L	4				11					
			10	1	7		9	5	3	6	8
	101	102	103	104	105	106	107	108	109	110	111
	Fibrous	Minus	Minus	Тар	Minus	Nitrogen	Fallow	Full	Minus	Pea	Brassica
	Roots	Fibrous	N Fixers	Roots	Brassica	Fixers	11	Mix	Тар	2	4
				3	8	6			7		

Measurements

- Cover Crop Biomass
- Biological Indicators
 - Microbial biomass
 - Enzyme activity
 - PMN
 - Mycorrhizal colonization and infectivity
- Physical Indicators
 - Wet aggregate stability
 - Compaction
 - Soil temperature
 - Soil water
- **Chemical Indicators**
 - Available N
 - Available P

Companion full field study on four farms focused on subsequent yield and quality

Locations, seeding, and termination timing

• Cover crop mixtures:

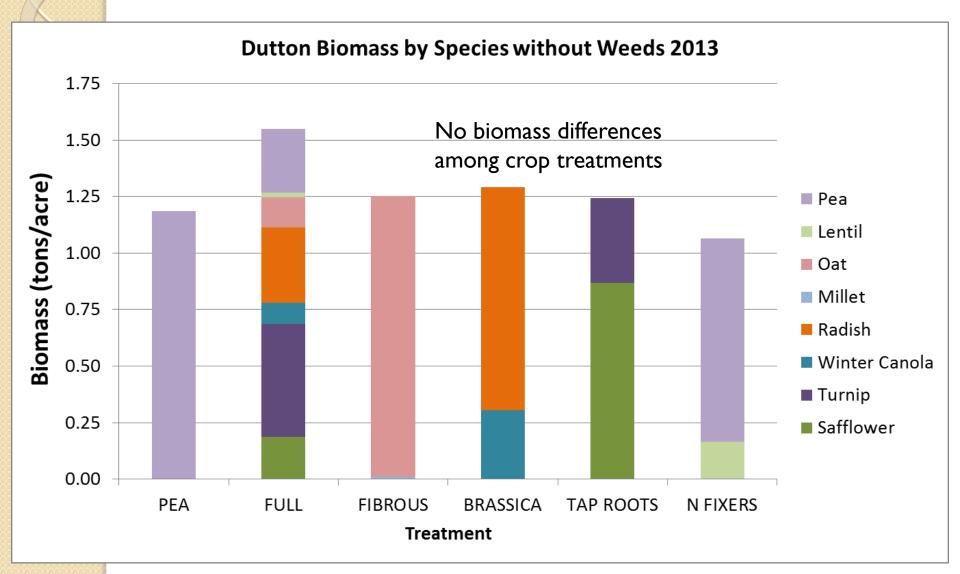
2012 and 2014: Conrad and Amsterdam 2013: Dutton and Bozeman (Kelly Canyon)

- Cover crop mixture growing season
 2012: Seeded early April, sprayed out mid June
 2013: Seeded early/mid-May, sprayed out ear mid-July
- Following test crop:

Conrad and Amsterdam: Spring wheat Dutton and Bozeman: Winter wheat

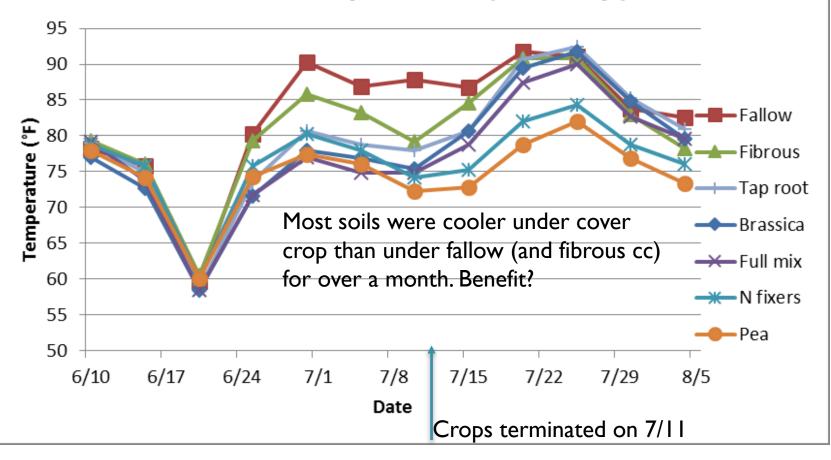
Unpleasant surprise #1: At Conrad in 2012, weed biomass > crop biomass in treatments with cereals

Unpleasant surprise # 2: Glyphosate alone didn't kill common vetch


Other practical findings to date

- Seeding shallow (1/2 inch, all through box) produced more consistent stands than with small seeds shallow and large seeds deep (2012)
- Radish, oat, pea, turnip, safflower all did well.
 Millet, ryegrass, camelina, and lentil not so well.
- Mid May seeding (2013) worked better than early April (2012) for weed control
- Need a herbicide mix to kill pea and vetch

Pleasant surprises (it rained in 2013)



Pleasant surprises: there was good to excellent biomass at both sites

Large soil temperature differences among treatments

Dutton Soil Temperature (2" Deep) 2013

Other research findings to date

- Potentially mineralizable nitrogen: Amsterdam: Pea=full mix>fallow Conrad: Pea>full=fallow
- Microbial enzymes, microbial biomass, and penetration resistance not different among treatments at 2012 sites
- Subsequent wheat yield data being compiled but yield on fallow appears highest at Conrad
- Wet aggregate stability, mycorrhizal fungi, nitrate? Stay tuned.
- Northern Ag Research Center is conducting a separate cover crop cocktail study on larger plots with forage harvest treatment, more combinations, different timings. Talk to Darrin Boss if interested.

Conclusions

- Single species cover crops generally do not benefit soil quality, yield, or economics in short term.
- In long term, single species cover crops have been found to increase grain yield and protein, especially under low N conditions.
- Cover crop cocktails may have benefits over singlespecies, but benefits to soil quality have yet to be documented in Montana.

For more information on project, go to:

http://landresources.montana.edu/soilfertility and click on cover crops.

Can also find numerous documents and tools on nutrient management, including bulletin and fact sheets mentioned

Questions?

We thank USDA Western SARE for funding.