Fertilizer Management in a Down Market, Barley Focus

Tri-County Crop School, Three Forks February 21, 2018

Clain Jones <u>clainj@montana.edu</u> 994-6076

MSU Soil Fertility Extension

Primary objective today: Assist you in maximizing profit from fertilizer management in era of low commodity prices

Specifically, I will discuss:

- Steps towards calculating an optimum N rate
- The law of diminishing returns
- Fertilization for optimal N use
 - Timing
 - Source & legume rotations
 - Placement
- P, K, S, and micronut. management

Driving forces behind fertilizer rates

- Soil nitrate-N: can vary greatly by year due to e.g. plant residue decomposition, leaching. Fertilization is influenced by yield goal, soil test ideally 2-3 ft. in the spring or late fall.
- P and K: are more stable in soil. Losses to erosion, and harvest and 'fixation', fertilization determined by 6" soil test level independent of yield goal.
- Soil S: can also vary greatly by year, but soil tests not best tool. Use field history, crop performance and tissue tests.
- Micronutrients: can vary seasonally and annually. Availability is influenced by organic matter and pH, which are relatively stable over time, and soil temperature and moisture, which vary greatly. Very little research.

N: Realistic yield goal for rate calculations

- Use variety selection tools (AMBA, MSU-SARC, MSU Dept Plant Sciences and Plant Pathology)
- Past yields indication of future performance
- Having ability for in-season N application allows conservative yield estimate for pre-plant rate

Law of diminishing returns

Applied N (lb/ac)

Because it's not that simple: MSU N Econ calculator

- Inputs
 - N fertilizer cost, malt/feed grain price, plump and protein cutoff
 - Yield goal
 - Residual soil N
 - SOM
 - These help calculate **TOTAL** available N for max net return

Calculators online for barley, SW, and WW after fallow

http://www.msuextension.org/econtools/nitrogen/index.html

N considerations unique to barley

- Malting barley 1.2 lb N/bu, feed barley 1.6 lb N/bu starting levels.
- Lower N for malting barley to decrease risk of low plump and high protein.
- Test spring soil N to avoid high protein.

Optimal N for 70 bu/ac barley

With 40 lb residual N, add 40 lb N/ac for optimal NR

Applied N (lb/ac) Urea \$460/ton, grain \$6/bu

If fertilize for 70 bu/ac but get 40 bu/ac

Optimal total N for 40 bu/ac is 35 lb N/ac. Any additional N or soil residue N will not increase yield, which was water limited. Will produce feed grade barley.

Total lb N/ac (soil + fertilizer)

Urea \$460/ton, grain \$6/bu

MSU N rate calculation tool takes into account fertilizer costs, grain prices, soil organic matter, residual soil N, and protein discounts/premiums (for wheat)

http://www.msuextension.org/econtools/nitrogen/index.html

Total available N **(lb N/bu)** for maximum return: Malt barley following fallow

Derley	\$/ton urea			
Barley (\$/bu)	\$275	\$460	\$740	
	Total lb N/bu			
4	1.16	1.08	1.00	
6	1.16	1.08	1.08	

Based on 60 bu/ac, 2% O.M.

Best way to maximize profit is to adjust rates based on costs, prices, and discounts, on the MSU calculator.

N rate adjustments

- Fall vs. spring soil test
- Stubble: small grains stubble high carbon to N (C:N). Adjust fertilizer N up or down? 10 lb N/1000 lb stubble up to 40 lb N
- Fallow: assume ½ of stubble has decomposed over previous year when adjusting
- After legume rotation: Adjust fert up or down? Legumes credit (add) N

Сгор	N credit (lb N/acre)	
Alfalfa	40	
Annual legume 1 x	~10	
Annual legume >3 x	~20	

Soil test: Fall soil tests can lead to over or under-fertilized fields

High N crop residue and/or high O.M.

Mineralization

Over winter

High Precip

High N on shallow or coarse soil

Under fertilized

Over fertilized

N leaching (or N₂ gas losses?)

Compare fall with spring a few times to see patterns of loss or gain for given pastures/rotation

Variable rate N application (Zone or site specific farming)

- At this time economic advantage is inconsistent (and hard to study)
- At simplest, divide field into zones of low, med, high productivity
- NDSU has bulletin series on Zone farming SF1176 series at <u>www.ag.ndsu. edu/publications</u>

Image adapted from IPNI 2012

Critical barley stem tissue nitrate-N concentrations may help decide whether to topdress N

Feekes 3 = main shoot and 6 tillers, F7 = 2nd node visible, F10 = boot swelling Stark and Brown, 1987, ID, irrigated, 3-leaf and Feekes 3 Thompson 2004, AZ, irrigated, Feekes 3, 7 and 10

Questions?

On to Timing, Source, Placement

Timing depends on source

- Readily available [urea (46–0–0), urea ammonium nitrate (28–0–0)]
 - shortly before seeding up to mid-tillering
- Slowly available (manure, slow-release N)
 - take time to become available
 - apply well before needed e.g., fall
- Legumes, the ultimate slow release, will be discussed under 'rotations'

Different N sources have different volatilization and leaching loss potential **POTENTIAL** loss compared to

	urea	
Source	Volatilization	Leaching
Conventional		
Ammonium nitrate, CAN, ammonium sulfate	less	~
UAN (solution 28 or 32)	less	~
Enhanced Efficiency Fertilizers		
Urease inhibitors (Agrotain, N-Fixx, Arborite® AG)	less	~
Nitrification inhibitors (DCD, N-Source, N-Serve, Instinct)	~	less
Combinations (SuperU)	less	less
Controlled release polymer coated (ESN)	less	less
Slow release (Nitamin, N-Sure, N-Demand)	~	less?

Slow- and controlled-release for the northern Great Plains

- No consistent benefit shown
- Fall broadcast may increase yield over spring broadcast urea, especially in a wet year when urea may leach overwinter
- If fall application to reduce spring workload is important, then extra cost might be worth it
- Release tends to be too slow with late winter/ early-spring application
- Consider blending with urea

Placement and N source on barley grain yield

At spring seeding 45 lb N/acre

PCU = polymer coated urea Edmonton, AB, Nyborg et al. 1999

Nitrification inhibitors

- Potential benefit with fallbanded urea where:
 - high precip with leaching in sandy soils
 - denitrification (nitrate → N₂ gas) in water logged/clay soils

Benefits less likely in dry or well drained soils

Instinct II[®] (nitrification inhibitor) increased winter wheat grain yield under irrigation but not dryland

Irrigated

Dryland

Scherder et al., 2015, inland Pacific NW UAN sidedress dribble stream bar, urea preplant incorporated

Placement – uniform application, where its needed

- Urea and ammonium based fertilizers best subsurface placed (due to volatilization)
- Banding is more efficient use of N, use less N but different equipment and takes more time
- Safe rates for seed placed
 - On-line resources to calculate
 - 2-3 x higher with polymer coated
- Foliar application
 - Use practices to min leaf burn
 - < 30 lb N/ac of UAN</p>
 - < 45 lb N/ac of liquid urea</p>
 - Use less with herbicide, surfactant, sulfur, NBPT

Questions?

On to Rotations

Crop rotations

- Barley shows little yield response from previous crop. However there are other benefits:
 - Reduce pest levels of weeds, diseases and insects
 - Increase soil organic matter for increased water storage and nutrient supply
 - Increase economic and environmental resiliency

Residue	Relative Barley Yield
SW, Barley	1.00
Pea, Lentil	1.02
Canola	0.99
Sunflower, Safflower	0.95

Based on research at Mandan, ND, average over 4 rotations. Adapted from Tanaka et al., 2005 and 2007, by K. McVay

Crop rotation and tillage system effects

4 dryland crop cycles of wheat-fallow or wheat-pea grain, then all fallow before barley

Perry Miller, Unpub data, Fife, MT

N from legumes

- Legume cover crops release more N more quickly than legume grain (pulse).
- Benefit to yield with less or no fertilizer N, compared to fallow, takes 3 to 4 cycles (several MSU studies with wheat; e.g., Miller et al., 2015).
- A pulse rotation can still increase barley yields planted three years after the pulse crop.
- Legume N credit is highly variable among species and agronomic conditions.

Legume crop	N Credit Ib N/acre	
Grain 1-2x	~10	
Grain ≥ 3x	~20	
Cover crop 1-2x	20-30	
Cover crop ≥ $3x$	30-50	

Prior Crop Effect on Irrigated Barley Yield and Protein

Huntley, MT, Welty et al. 1988, McGuire et al. 1989

Varieties for low protein

- Variety trials are regionally available
- MSU Post Farm in Gallatin Valley
 - irrigated: Champion, Haxby, Hockett, Metcalfe
 - dryland:MT090190, MT124112, MT124128
- Dillon irrigated: Champion, Haxby, Odyssey, Synergy
- Moccasin dryland: MT090190, MT124112, MT124128

Khakbazan et al., 2014, SK, only 1 time 3-crop rotation

Questions?

On to S, P, K, and micronutrients

- Use crop and field history (sandy, acidic, or low OM soils are more likely low in S), crop appearance, and soil and tissue sampling
- If the prior crop showed S deficiency, then 10-15 lb S/acre before or at seeding could be a wise investment (MSU Ffacts # 41)
- Apply sulfate S sources in spring to avoid overwinter leaching loss
- Elemental S slow to supply plant available S. Apply in fall to become available before peak demand. Will supply crop for > 2 years

With low soil S, balance S with N, select variety, for yield without high protein

Sherman et al., 2017, unpub data, dryland, Moccasin

P and K rates for feed/malt barley based on soil test levels to 6" depth

Olsen P soil test (ppm)	lb P ₂ O ₅ /acre	K soil test	lb K ₂ O/acre	
		(ppm)	Feed	Malt
0	50	0	75	90
4	40	50	65	80
8	30	100	55	65
12	20	150	45	50
16	10	200	30	35
>16 use removal rates, 0.36 lb P ₂ O ₅ /bu grain and 4.1 lb P ₂ O ₅ /ton straw		250	20	25
		>250 use 0.25 lb K ₂ O/bu grain and 30 lb K ₂ O/ton straw		

Source: MT Fertilizer Guidelines EB0161

Impact of starter P in a cool spring on spring wheat emergence

P is immobile and gets tied up in soil, consider "pop-up"

P source options

- Generally no yield differences between sources
- Exception: Liquids can produce higher yields on highly calcareous soils (> 20% CaCO₃), but may not be economical
- Limited research on specialized P fertilizers for cereals in Montana and surrounding region

Can 0-0-60 be ignored? Definitely not.

Agvise unpub. data, N=210 samples

Cl on small grains

- Cl is very mobile may need more if leaching or yield potential is high. 20 lb KCl/acre annually should provide enough.
- Over 210 trials in KS, MN, MT, ND, SD, MB and SK have evaluated CI-response in wheat and barley*
- Significant yield response in 48% of trials*
- Average response of 5 bu/acre*
- Especially consider KCl for barley varieties with low disease tolerance

*Source: Cindy Grant, Agriculture and Agri-Food Canada

Micronutrients

 A combination of deficiency symptoms, soil testing, and tissue testing may be best approach at identifying deficiencies. This is NOT an exact science.

- Micronutrient deficiencies are the exception, not rule
- Cool wet conditions cause deficiency will generally disappear when weather warms
- Too much micronutrient may hurt yield more than not enough

Micronutrients, cont.

- The main challenge is even distribution of a very small quantity – consider foliar options
- Read product label: look for 'available' micronutrients and watch for heavy metal contamination
- "Micronutrients should be used when there is an economic benefit to the farmer" – R. Karamanos, Ph.D. soil scientist
- Most conclusive test is growth responses from field strip trials

Summary

- Use realistic yield goals and soil test N to calculate pre-plant N rate
- Adjust in-season for given year
- Select the source appropriate for conditions
- Use on-line tools for variety selection, optimal N rate, safe seed-placed rates
- Diversify and recrop, consider legumes
- Build P & K in good times to rely on during lean times
- Watch for insufficient S, limiting N uptake

Resources - online

- Variety selection tool <u>www.sarc.montana.edu</u> > research results > reports to MWBC > reports by year > spring barley variety performance
- N rate calculation tool <u>http://www.msuextension.org/econtools/nitrogen/index.html</u>
- SARC Fertilizer Calculator
 http://www.sarc.montana.edu/php/soiltest/
- Safe Rate Seed Placed Calculator
 <u>http://seed-damage-calculator.herokuapp.com/</u>

Resources - publications

On soil fertility website under "Extension Publications" http://landresources.montana.edu/soilfertility/

- MT Barley Production Guide (EB0186)
- Interpretation of Soil Test Reports for Agriculture (MT200702AG)
- Developing Fertilizer Recommendation for Agriculture (MT200703AG)
- Nutrient Uptake and Timing by Crops (EB0191)
- Nutrient Management in No-Till (EB0182)
- Enhanced Efficiency Fertilizers (EB0188)
- Soil Scoops under "Soil Scoop"

Under "Presentations" Micronutrient Testing and Mgt in Barley, Corn, Pulses. Jan 2017, and more

QUESTIONS?

This presentation and additional information on soil fertility topics is available at http://landresources.montana.edu/soilfertility

Photo by Andrew John