Soil Building Practices and Forage Nutrient Management

Pondera County Workshop January 28, 2016

Clain Jones clainj@montana.edu 994-6076

MSU Soil Fertility Extension

Today's objectives

- Management practices to benefit soils
- Potential benefits from cover crops
- Cover crop management for optimal benefits
- Forage nutrient management
 - N, P, K, and S
 - Sources
 - Application for high use efficiency
 - Economic considerations

Average Soil Components

Practices to benefit soil

Soil Quality vs Soil Health

<u>Soil Quality</u> = properties that change little, if at all, with land use management practices

- Texture
- pH
- Cation Exchange Capacity

Which is more likely to be influenced by cover crops?

Soil Health = dynamic properties which may be subjective to measure

- Aggregation
- Microbial activity
- Tilth
- Nutrient availability
- Water holding capacity
- Compaction

MSU single species cover crop research since 1999 has found higher grain yields and/or protein after cover crops when:

- 1. Seeding winter legumes (vs spring legumes)
- 2. Seeding spring cover crops early (vs late)
- 3. Terminating at first bloom (vs pod)
- 4. Tilling cover crop (vs spraying)

Why?

- More N fixed (1)
- More time for soil water to be recharged and N to become released from residue (1, 2, 3)
- Faster N release and fewer N losses (4)

Our MT studies confirmed early Saskatchewan studies that termination timing is key, when water is limiting

Chem fallow Early bloom Mature pod 45 а а 40 b b Grain yield (bu/acre) 35 а 30 а а а 25 b 20 15 10 5 Denton Amsterdam Havre 0 Water limiting N limiting N & water not

not N

Location characteristics

not water

limiting

Haying cover crop at early bloom produced higher sp. wheat yields the following year than harvesting pea when water or N limiting (Miller et al 2006)

Species diversity: does it increase benefits?

Nitrogen Fixers

Spring Pea Common Vetch Lentil Increase nitrogen

Add soil carbon

Fibrous Root

Oats Italian ryegrass Proso millet Reduce compaction, move nutrients upward

Potential disease control

<u>Tap Root</u>

Purple top turnip Safflower

Brassica

Daikon radish Winter canola Camelina Spring wheat yield at Dutton vs previous year total biomass (cc + weed)

Cover Crop + Weed Biomass (ton/acre)

Housman, Tallman, et al., unpub data, Dutton

Cover Crop Cocktails Plot Study: Take home messages on yield and soil quality

- After one cycle, spring wheat grain yields higher after pea and N fixers than most other mixes.
- Higher cover crop biomass correlated with lower spring wheat yield, likely b/c of more water and N use.
- Relatively few soil health differences between pea and 8-species mix after one cycle; not unexpected.
- After two cycles, no soil health differences between pea and 8-species mix, but CCs increased microbial activity.

Cover Crop Cocktail Farm Study: 1 rotation of mixed CC reduced grain yield in 4 of 6 production years

Location and Year

Yield less after mixed cover crops on farmers' fields, likely due to late termination and high water & N use by CCrop

Cover Crop Cocktails Farm Study: Take home messages on yield and protein

- Spring wheat grain yield was lower after CC than fallow in four of six field-scale studies, protein results were varied.
- High water use from late termination was likely cause of yield differences.

Questions?

Legume cover crops: They take time to influence subsequent wheat yield

Allen et al., 2011, Culbertson

SOM is lost after 10 years of fallow cropping

Engel, unpub data, MSU Post Farm, 2012

After 4 rotations pea GM provides same net return as fallow, with less N

Miller et al., 2015

Economic options

 Grazing may provide more immediate economic return and increase the rate of change in soil health. **Currently under** study at MSU-Northern.

• NRCS provides incentives for growing cover crops

Conclusions

- In short term (1 CC-cycle studies), grain yield and protein are generally equal or less than after fallow.
- Early termination (by ~ first pea bloom) is key to preventing yield and protein losses.
- In short term studies, there does not appear to be yield or soil quality advantages of mixes over pea.
- In long term (4+ cycles), yield, protein, and net revenue can be higher after cover crops than fallow, especially at low N rates, likely from more available N.
- Cover crops provide resilience to uncontrollable factors such as weather and markets
- Cover crop value to soil health, subsequent crops, and possibly land value is expected to increase over time.

Questions?

On to fertilizing forages

Focus of N or P and K depends on % legume in stand

Yield increases and net returns greatest if < 36% alfalfa in stand and soil N < 5 lb N/acre (Malhi et al. 2004)

MT guidelines for forages

 Based on yield goal and soil tests
Recommendations by testing lab
Or tables given in *Fertilizer Guidelines for MT Crops* (EB0161)

Example soil test report – Conrad, MT, October 2015

AN	AL	Parallella Co. To. Contractor of the	LABORATORY FINDINGS			APPLICATI	ON GUIDEL
SAMPLE IDENTIFICA LABORATORY NUMB		J2 28729550	Ideally:	INTENDED CROP VIELD GOAL PREVIOUS CROP			
ANALYTE	UNITS	RESULTS	LOW MEDIUM OPTIMUM V. HIGH				TY GUIDELINES
ORGANIC MATTER	96	Municesson (1991)		FERILITY ELEMENT	CROP REMOVAL	MIDWEST SUGGESTS	CROP REMOVAL M
EST N RELEASE	THE INTERNAL	3.2	OM > 3%	NITROGEN (N)			
NITRATE-N	pom	6		CARRYOVER N		(11) 11-	
SUB-SOIL NO,-N 1	ppm	0		CARRIOVER		(11) lbs	
SUB-SOIL NO, -N 2	ppm						
P, PHOSPHORUS	ppm	18		PHOSPHATE (P,O,)			
P, PHOSPHORUS	ppm .	41	and the second se	110011111 (1 ₂ 0 ₆)			
BICARB-P	ppm	11	bicarb-P>16 ppm			1	
POTASSIUM	ppm	442		POTASH (K,O)			
MAGNESIUM	ppm	540		MAGNESIUM (Mg)			
SULFUR	ppm	14		SULFUR (S)	1		
ZINC	ppm	0.4		ZINC (Zn)			
MANGANESE	ppm	5		MANGANESE (Mn)			
IRON	ppm	10		IRON (Fe)	100		
COPPER	ppm	1.1	Construction and the second second	COPPER (Cu)			
BORON	ppm	1.0	CONTRACTOR DE CONTRACTOR	BORON (B)			
CALCIUM	ppm	3690		I BOY Y	SU	GGESTED AN	ENDMENT GU
SODIUM	ppm	20		AMENDMENT	MIDWEST	SUGGESTS	MIDWEST S
SOLUBLE SALTS	mentics/ om	0.4	Salts < 4	LIME POUNDS			
EXCESS LIME RATE	19.1	M		LIME TON			
pH		8.0	Ideally, 6 < pH < 7.5	ELEMENTAL SULFUR			
BUFFER INDEX	201			ATTACK AND A STREET			
C.E.C.	meg ¹ 100g	24.2		GYPSUM TONS	1		
		IN A REAL PROPERTY OF	NT BASE SATURATION			CC	OMMENTS
YOUR SOLL		Mg 18.6 Ca 76.3		Surface Nitrate Depth The above analytical r Samples are retained to	esults apply on		(s) submitted.

Example soil biological activity test report – Conrad, MT, October 2015

REPORT NUMBER -288-1033 COMPLETED DATE Oct 19, 2015 11534 RECEIVED DATE

Oct 15, 2015

PAGE 1/1 Oct 19, 2015

are sodic.

13611 B Street • Omaha, Nebraska 68144-3693 • (402) 334-7770 • FAX (402) 334-9121 www.midwestlabs.com

IDENTIFICATION

PONDERA CO EXTENSION

PONDERA COUNTYShould be 20 4TH AVE SW higher than 16 CONRAD MT 59425-

ACCOUNT

Should be less than 15. These 3

SOIL ANALYSIS REPORT

1.4.12	SAMPLE		LORGA	ORGANIC PHOSPHORUS					and the second second second second	MAGNESIUM	MACTATE EXCHANGEARCE		the second state	pH	CATION	DERCEN	T BASE	ATURATI	N (CON	FUED
LAB IUMBER *285*	CARAGE CAR	IFICATION	• • • • • • • • • • • • • • • • • • •	ER	MEAK EAN	ρ	BIC R	EN IORIATE RATE	K RATE	Mg tem FAT	Ca ca	Na	SOL pH	NOEX	EXCHANGE CAPACITY C.E.C. meg/100g	% K	44 Alg	% Ca	% Н	
69246	ROYE	3	2.6			104 vi	_				3227 M				29.1	4.8	23.5	55.3	0.0	16.4
69247	FELIX	1	2.6	м	28 н	79 vi	1 19	н	196 L	2409 vн	1546 vL	1385 v	н 7.8		34.3	1.5	58.5	22.4	0.0	17.6
69248	FELIX	2	2.8	м	63 VH	106 vi	4	S VH	429 vH	2837 vн	4429 L	4648 v	н 8.8		67.1	1.6	35.2	33.1	0.0	30.
69249	SPARL	EDER	4.3	н	6 vl	76 vr	+ 5	L	332 vн	1084 vн	3517 м		7.6		27.5	3.1	32.8	64.1	0.0	
LAB	ER SUBSOL 1						SUBS	08.2	Total (bach	ULFUR S Nov	ZINC A	MANGANESE IRO Min Fe DIRA DO		Cu 8		LOE SUT	SALTS			
285	24	EN4	0-6	pperi	Ess/A	depth OH	gpm	tai	A OH		ore RATE I	DON PATE	gan RA	T ppm	KATE OF	re RATE	ppen	ACE.	3.0	H
69247	26		0-6							47	ALC: N		Should be less							н
69248	11	20	0-6							20			than 4. Middle 2						12.9	94
69249	2	4	0-6							4		2010	are saline.					1.0	L	

ubmitted, Samples are retained a maximum of 30 days. may not be reproduced in whole or in part, nor may any reference be made. The above analytical results apply only to the sample Our reports and letters are for the exclusive and confidential use of our client to the work, the results, or the company in any advertising, news release, or other public announcements without obtaining our prior written authorization.

Adding N – having alfalfa in mix may be best source of N

Dryland grass response to single N application

Havre, dryland grasses

single fall broadcast N lb/acre

Dryland grass response to single N application

Havre, dryland grasses

single fall broadcast N lb/acre

Challenges to high N use efficiency in perennial systems

- Difficult to incorporate N
- Plant residue
 - intercepts fertilizer
 - increases volatilization
 - can tie up N

Days until Irrigation after Urea Application

Eckville, Alberta

Bromegrass, Malhi et al. 1995

Trade-off between yield and forage nitrate

Bromegrass, Vimy, Alberta Penny et al. 1990 and MT200505AG

Questions?

On to Timing

Timing depends on source

- Readily available [urea (46–0–0), urea ammonium nitrate (28–0–0)]
 - Grass: shortly after green up
- Slowly available (manure, slow-release N)
 - take time to become available
 - apply well before needed e.g. fall

Grass: provide N shortly after green-up

Willamette Valley, Oregon Hart et al. 1989

Fertilization strategy

- If a field containing < 75% legumes will be rotated into a different crop soon, consider N for immediate gain
- If goal is low input, long-term sustainable production rather than prime quality hay, adequate P and K are key and cheaper than re- or interseeding
- If you need to buy hay or rent pasture, you should consider fertilizing

Summary

- Nitrogen, phosphorus, potassium, and sulfur can all increase forage yields
- Economic benefits often aren't realized in the first year (so don't base advice on 1 yr studies!)
- Soil testing is essential for determining fertilizer needs
- Select the right rate, source and timing

On soil fertility website under *Extension Publications* <u>http://landresources.montana.edu/soilfertility/</u>

- Nutrient Management for Forages: N (EB0217);
- Nutrient Management for Forages: PKSMicros (EB0216)
- Enhanced Efficiency Fertilizers (EB0188)

Questions?

Photo by Ann Ronning Additional info at: tp://landresources.montana.edu/soilfertility/