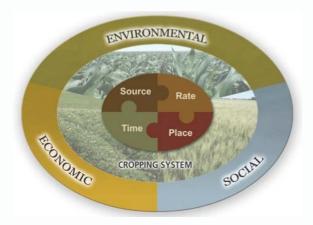
FERTILIZATION OF FORAGES

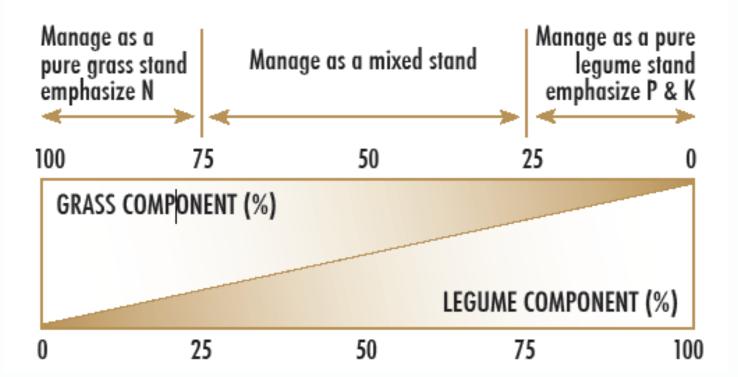
Wheatland County May 19, 2015

Clain Jones clainj@montana.edu 994-6076

College of AGRICULTURE MONTANA AGRICULTURAL EXPERIMENT STATION

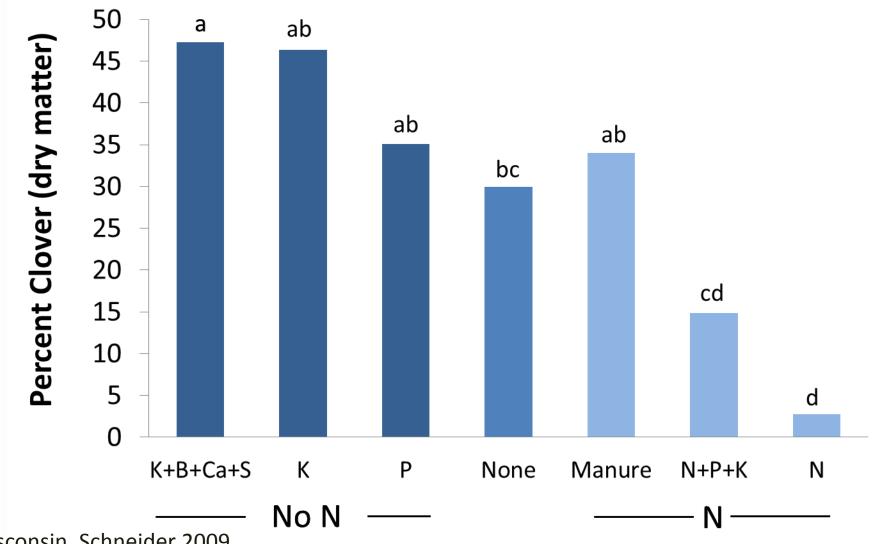

EXTENSION

Some questions for you


- Who raises grass hay?
- Who raises alfalfa hay?
- Who has pasture?
- Who grows annual forages (ex: Haybet barley, Willow Creek winter wheat)?
- Ok, now that we've all gotten the blood flowing....

Goals

- To review use of Fertilizer Guidelines to determine N, P and K rates on forages
- To present timing, source and placement considerations of N and P fertilization
- To illustrate yield and quality responses of hay to N fertilizer
- To provide an update on new fertilizer products that could benefit forage producers
- To provide economic considerations for fertilizing



Focus of N or P and K depends on % legume in stand

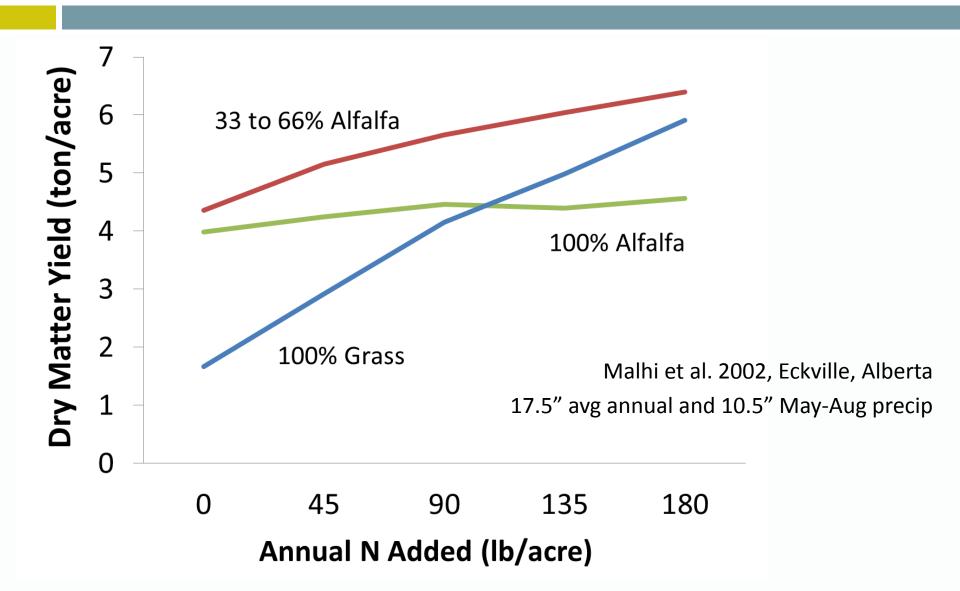
 Yield increases and net returns greatest if < 36% alfalfa in stand and soil N < 5 lb N/acre (Malhi et al. 2004)

Fertilizing with nutrients other than N favors legumes over grass

Wisconsin, Schneider 2009

N rate depends on legume to grass ratio

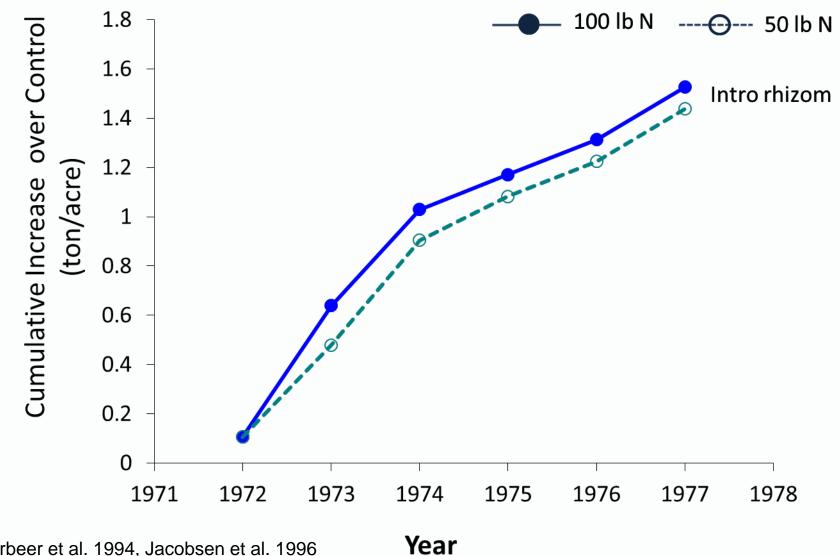
N fertilizer guidelines for alfalfa and grass in MT (Table 1 in EB0161)

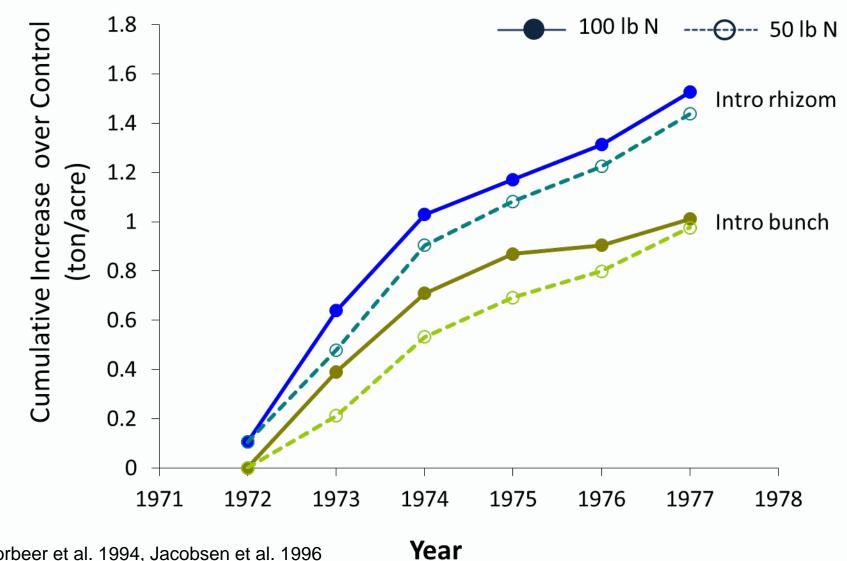

	Alfalfa/Grass												
Yield Potential	80/20	64/40	40/60	20/80	0/100								
(ton/acre)		Available N (lb/acre)											
1	5	10	15	20	25								
2	10	20	30	40	50								
3	15	30	45	60	75								
4	20	40	60	80	100^{*}								
5	25	50	75	100^{*}	125 [*]								
6	30	60	90	120 [*]	150 [*]								

*Do not exceed 100 lb/ac in a single application on cool season grasses (Brummer et al. 2011). Need to divide by fraction of N in fertilizer to find total fertilizer need

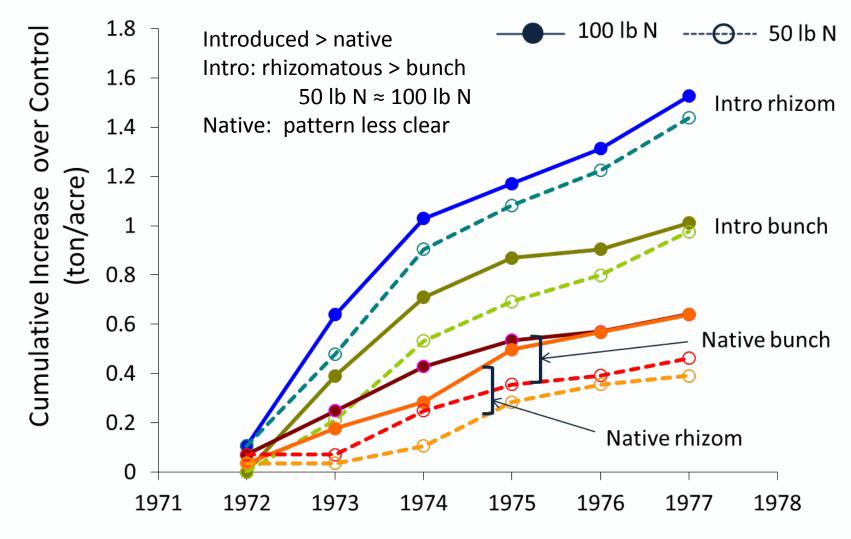
Example soil test report

Nutrient In The Soil Interpretation				1st Crop Choice				2nd Crop Choice				3rd Crop Choice							
			VLow	Low	Med	High	Wheat-High Pro.			Wheat-High Pro.				Barley-Malting					
	0-6" 6-24"	15 lb/ac 24 lb/ac	Ν					YIELD	GOAL			YIELD	GOAL		YIELD GOAL				
	24-42"	63 lb/ac	******	**			$\mathbf{\nabla}$	50	Bu	/		60	Bu		70 BU				
	0-24''	39 lb/ac					SUG		CURDELIN	NES	SUGGESTED GUIDELINES				SUGGESTED GUIDELINES				
Nitrate								Ba	and		Band				Band				
TOTAL		102#					LB/A	CRE	APPLICA	TION	LB/A	CRE	APPLICA	TION	LB7.	CRE	APPLI	CATION	
Phosphorus	Olsen	4 ppm	*****				N	1/1	50		N	14/1	80		N	45	Custo	mized	
Potassium		368 ppm		•••••			P ₂ O ₅	36	Band	*	P ₂ O ₅	43	Band	*	P ₂ O ₅	35	Bar	nd *	
Chloride	0-24"	20 lb/ac	*****	••			K ₂ O	10	Ban (Starte	-	K2O	10	Band (Starter		K2O	10	-	and ter)*	
,	0-6" 6-24"	14 lb/ac 36 lb/ac	******		*	**	Т	o de	eteri	mir	ne N	l ra	te yo	วน เ	nee	d:		۶t	
Sulfur Boron							$-$ 1. Yield goal $\frac{1}{-}$							31)					
Zinc									-			dor	oth t		٥n	ort	F		
Iron							⊢ [∠]				•								
Manganese							-	р	pm t	:0 I	b N	/ac	re (p	pm	א ר	2 X			
Copper		0.5 ppm	*****	*****			-	а	ctua	l de	eptł	ו in	inch	nes	/6)			
Magnesium											- <u> </u>					/ 	1		
Calcium							Mg				Mg				Mg				
Sodium							Lime				Lime				Lime				
Org.Matter		2.3 %	*****	***			Cati				tion Exchange		% Ba	se Sa	turation (Typical Range)			nge)	
Carbonate(CC	E)						Soil p	H Bu	uffer pH		Capacit	-	% Ca	% N	1g %	κ	% Na	% H	
Sol. Salts	0-6" 6-24"	0.36 mmho/cm 0.35 mmho/cm	******	1000			0-6" 8 6-24" 8												

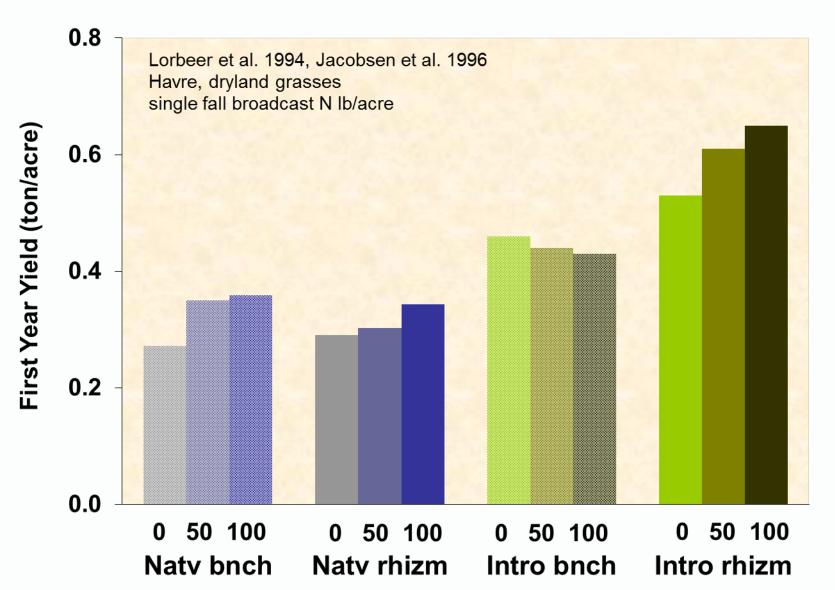

Adding N – having alfalfa in mix may be best source of N

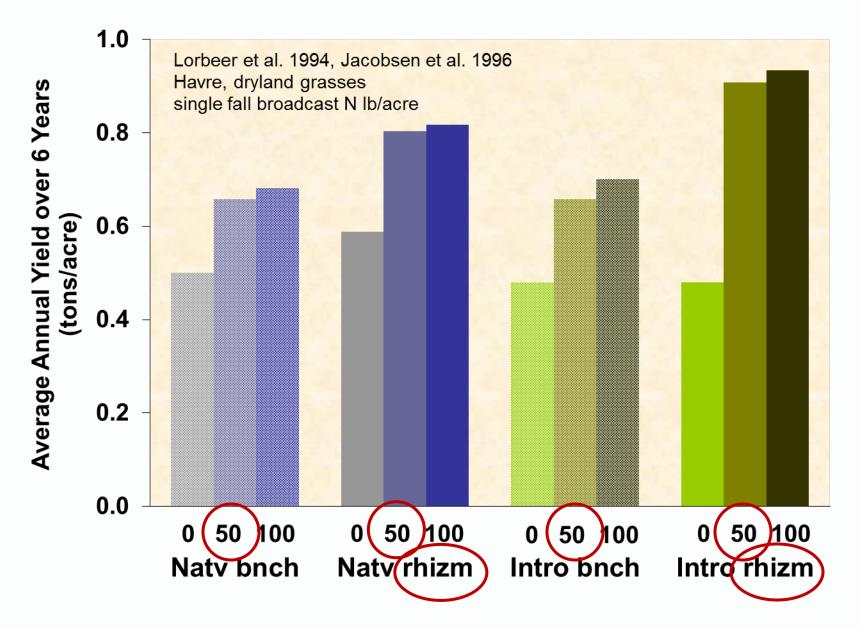

Single N application to dryland grass pasture

- near Havre, MT (Lorbeer et al. 1994, Jacobsen et al. 1996)
- 0, 50 and 100 lb N/acre fall broadcast once
- harvested for 6 years
- dryland grasses
 - Natv Bnch: Basin wildrye, Beardless whtgrs, Green needlegrass, Slender whtgrass
 - Natv Rhizom: Thickspike whtgrass, Western whtgrass
 - Intro Bnch: Crested whtgrass, Russian wildrye, Tall whtgrass
 - Intro Rhizom: Pubescent whtgrass, Intermed whtgrass (2)

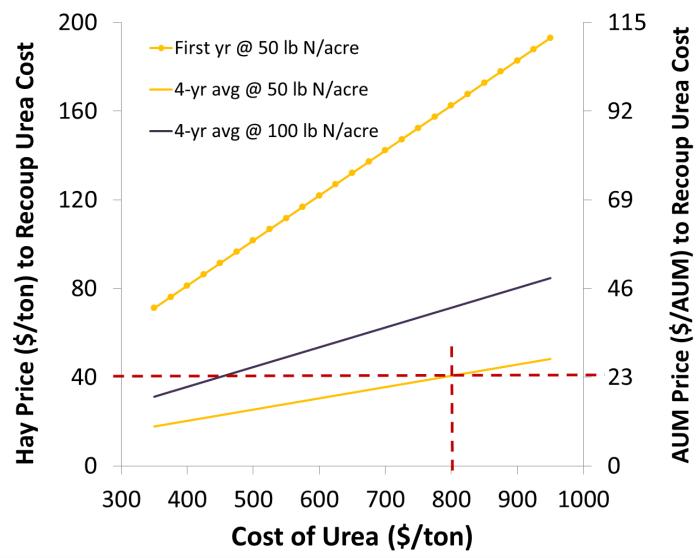

Cumulative increase in dryland grass production over the control over time after single N appl.

Lorbeer et al. 1994, Jacobsen et al. 1996 Havre, dryland grasses single fall broadcast N lb/acre Cumulative increase in dryland grass production over the control over time after single N appl.


Lorbeer et al. 1994, Jacobsen et al. 1996 Havre, dryland grasses single fall broadcast N lb/acre Cumulative increase in dryland grass production over the control over time after single N appl.

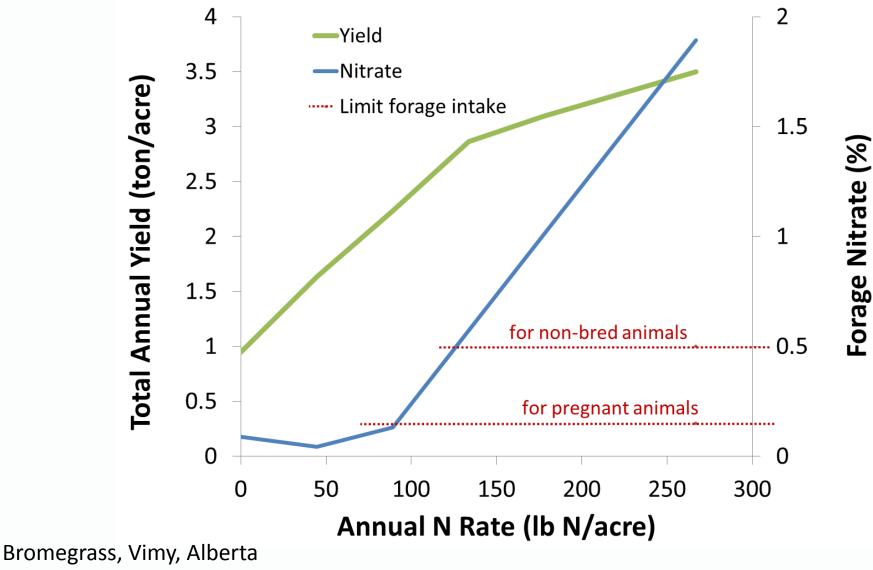

Year

Lorbeer et al. 1994, Jacobsen et al. 1996 Havre, dryland grasses single fall broadcast N lb/acre


First year dryland grass yield after single N appl.

6 year average annual yield after a single N application

N Fertilization Economics: dryland introduced sodforming grass



Havre, MT, Jacobsen et al. 1996

N for hay quality

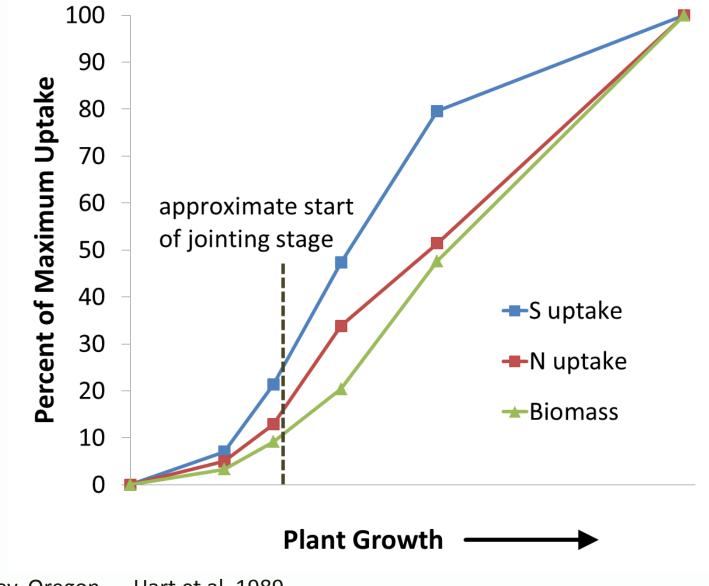
- Higher yields may mean lower quality
- In dryland or mountain meadows 40-80 lb N/acre to increase yield and maintain quality (Brummer and Rill 1999, Brummer pers. comm.)
- Too much N may be lost to groundwater or cause nitrate toxicity in forage

Trade-off between yield and forage nitrate

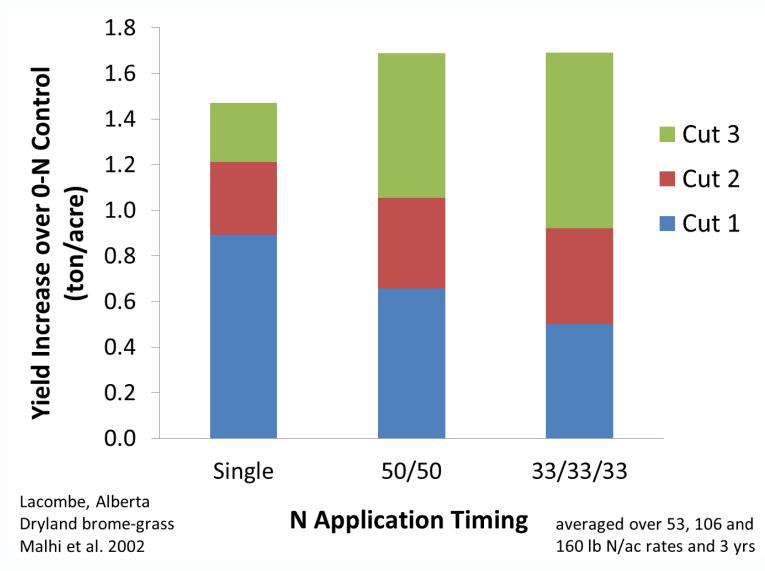
Penny et al. 1990 and MT200505AG

Placement

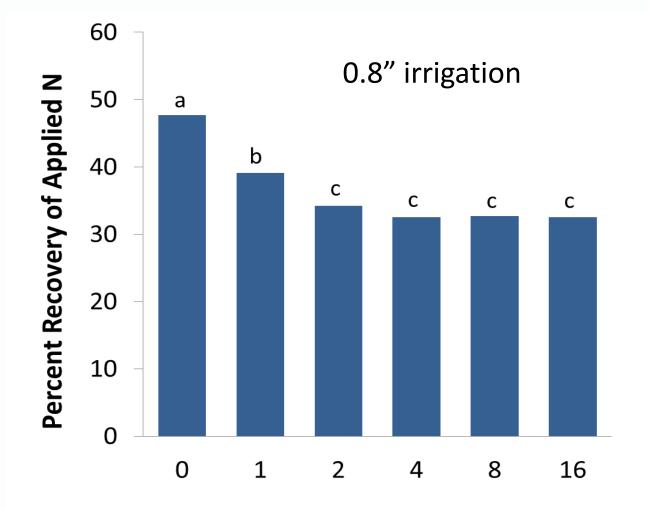
- Granular: On established forage, surface broadcast is essentially only option. Others?
- Liquid (UAN; 32-0-0 or 28-0-0): Surface broadcast including fertigation, surface band, or knifed.


<u>Method</u>	Forage Yield
Broadcast	2.9 t/ac
Knife	2.8 t/ac
Surface Band	3.4 t/ac

N. Central Regional Extension Pub #326, KSU


- Yield and quality are affected by timing
- Because urea may take days to weeks to become available, urea should be applied earlier than AN historically was for fast green-up.

Provide N shortly after green-up

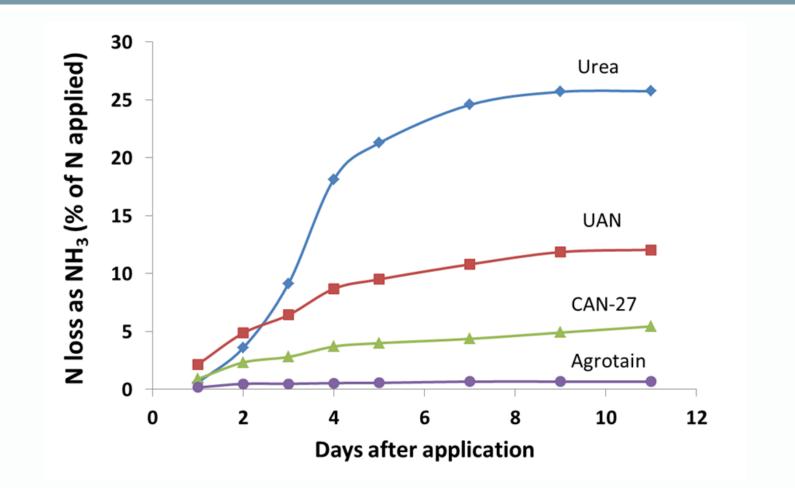

Willamette Valley, Oregon Hart et al. 1989

Split app may increase total yield, improves distribution over season

Early spring alone, or split between early spring and after the 1st, or 1st and 2nd cutting

Incorporate immediately with water to increase N recovery (likely a volatilization effect)

Days until Irrigation after Urea Application


Eckville, Alberta

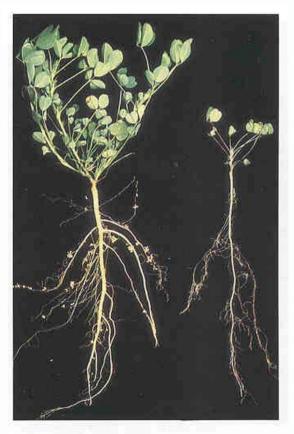
Bromegrass, Malhi et al. 1995

Enhanced Efficiency Fertilizers (EEFs) and forage production

- Difficult to incorporate N, and plant residue intercepts fertilizer, increases volatilization, and can tie up N
- EEFs retain N on site by reducing loss to volatilization, leaching and N-gas
 - Stabilize or inhibit soil processes to extend N availability (NSN[®]), reduce urea conversion to ammonia (NBPT) or ammonium to nitrate (DCD)
 - Slow release of urea through a coating (polymer coated PCU such as ESN[®], sulfur coated - SCU)
 - Calcium ammonium nitrate (CAN) isn't enhanced but is less explosive than ammonium nitrate

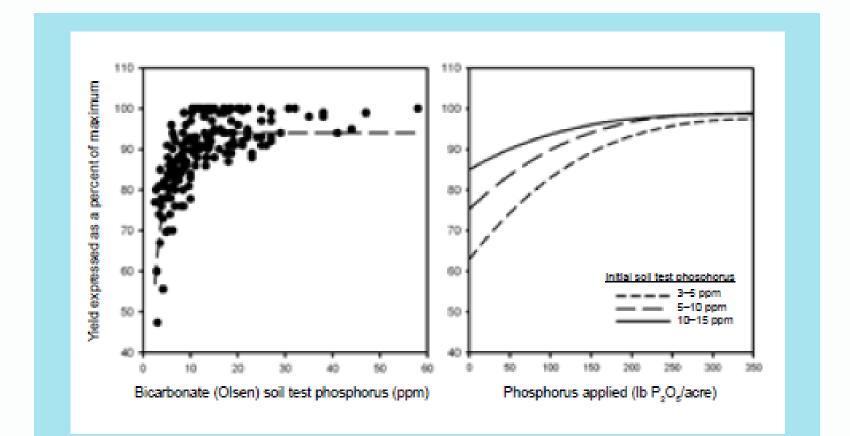
Effect of N source on volatilization losses

Applied to grass sod, avg. air temp 50 °F (Horneck and Holcomb)


Nitrogen EEF and forage production

- Environmentally responsible but more \$
- Conservation Stewardship Program incentive

Enhanced Efficiency Fertilizers (EB0188) <u>http://landresources.montana.edu/soilfertility</u>


Phosphorus (P)

- Why important to grass/alfalfa stands?
 - Helps with N fixation in nodules
 - Favors alfalfa over grass
 - P improves alfalfa regrowth and recovery after cutting (IPNI)

Alfalfa response to P

• Alfalfa more likely to respond if soil levels low.

Data from Koenig et al. 1999

PNW bulletin 611

Example soil test report

Nutrient In	The Soil	In	terpr	retati	on	1st Crop Choice				2nd Crop Choice				3rd Crop Choice				
		VLow	Low	Med	High		Wheat	High Pro.		Wheat-High Pro.				Barley-Malti			1	
0-6" 6-24"	15 lb/ac 24 lb/ac				YIEL	D GOAL			YIELD	GOAL		YIELD GOAL						
24-42"		*****	**				50	Bu			60	Bu		70 BU				
0-24''	39 lb/ac					SUG	GESTE	GUIDELI	VES	SUG	GESTED	GUIDELIN	IES	SUGGESTED GUIDEL			LINES	
Nitrate							В	and			Ba	and			. e	and	100	
TOTAL N=	102#					LB/A	CRE	APPLICA	TION	LB/A	CRE	APPLICA	TION	LB7.	CRE	APPLI	CATIO	
Olsen	4 ppm	*****				N	1/2	-		N	1 4 1	80		N	45	Custo	mized	
Potassium	260		•••••	•••••		P ₂ O ₅	36	Band	*	P ₂ O ₅	43	Band	*	P ₂ O ₅	35	Bai	nd *	
0-24''	20 lb/ac	*****	••			K ₂ O	10	(Starte	a r)*	K2O	10	Band (Starter		K2O	10		and rter)*	
, 0-6" 6-24"	14 lb/ac 36 lb/ac	*****			**	сі	20	Broadc	ast	СІ	20	Broadca	ast	CI	20	Broa	dcast	
Sulfur						S	9	Band (1	M	SU 🕯	guio	delin	es	are		d	(Trial)	
Soron						В					-	Olse						
ron						Zn			Da	seu	UII	0130						
fanganese						Fe				Fe				Fe				
Copper	0.5 ppm	*****				Mn				Mn				Mn				
lagnesium						Cu	2	Band	l.	Cu	2	Band		Cu	2	Ba	nd	
alcium						Mg				Mg				Mg				
odium						Lime				Lime				Lime				
Drg.Matter	2.3 %		***				Cation Exchange % Base Saturatio		ration (Typical Range)									
Carbonate(CCE)						Soil p	HB	uffer pH		Capacit		% Ca	% N		K	% Na	% H	
0-6" 6-24" Sol. Salts	0.36 mmho/cm 0.35 mmho/cm	******				0-6" 8 6-24" 8						-						

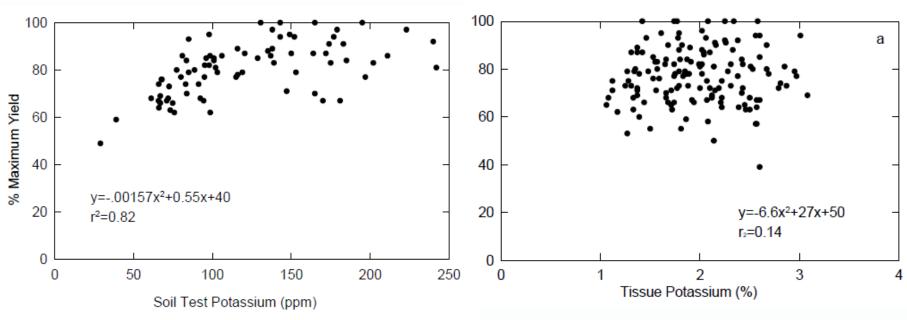
P guidelines for alfalfa and grass in MT based on soil analysis (Table 18 in EB0161 w/ alfalfa/grass revised).

		Olsen P S	oil Test Le	evel (ppm)						
Crop	0	4	8	12	16						
	P Fertilizer Rate (lb P ₂ O ₅ /acre)										
Alfalfa	140	110	75	40	20						
Alfalfa/grass (50/50)	93	73	53	30	13						
Grass	45	35	30	20	5						
If soil test is above 16 ppm then use removal rate											
(10 to 11 lb P ₂ O ₅ /t	ton)										

Potassium (K)

Benefits

- Improved alfalfa stand persistence, shoots per plant and rhizobia activity
- Reduces leaf drop of alfalfa
- Improved resistance to plant diseases
 Needed in Montana?


Useful on many soils, even some having high K values (especially in cool spring soils)

How might lack of K affect an alfalfa-hay field?

Base alfalfa K need on soil test rather than tissue test

Koenig 2001 WNMC

- Too much K can lead to luxury consumption by first cutting and risk of milk fever.
- Apply ½ the rate after first cutting and rest after last cutting for following year

Example soil test report

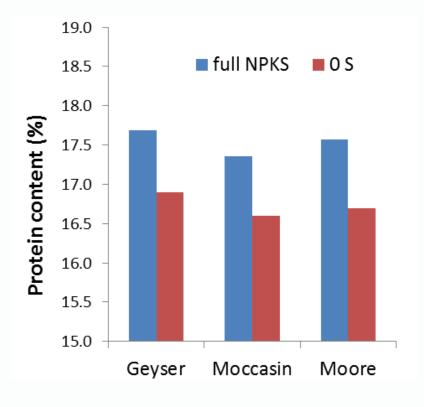
Nutrient I	n The Soil	In	terp	retati	ion	15	t Cro	p Choic	e	2n	d Cro	p Choic	e	3rd Crop Choic		ice	
		VLow	Low	Med	High		Wheat-	High Pro.			Wheat-	High Pro.		Barley-Malting			1
0-6" 6-24"	15 lb/ac 24 lb/ac				YIELD	GOAL			YIELD	GOAL		YIELD GOAL					
24-42"	63 lb/ac	*****	**				50	Bu			60	Bu		70 BU			
0-24''	39 lb/ac					SUG	GESTED	GUIDELI	VES	SUG	SESTED	GUIDELIN	ES	SUG	GESTE	D GUIDE	LINES
Nitrate							Ba	and			Ba	and			B	and	60
TOTAL N =	102#					LB/A	CRE	APPLICA	TION	LB/A	CRE	APPLICA	TION	LB7.	CRE	APPLI	CATION
Olsen Phosphorus	4 ppm	*****				N	11/1	30		N	1 4 1	80		N	45	Custo	mized
Potassium	368 ppm		•••••			P O ₅	36	Band	*	P ₂ O ₅	43	Band	*	P ₂ O ₅	35	Bar	nd *
0-24" Chloride	20 lb/ac	*****	**			K ₂ O	10	Ban (Starte		K2O	10	Band (Starter		K2O	10		and ter)*
, 0-6" 6-24"	14 lb/ac 36 lb/ac	******				CI	20	Broadca	ast	CI	20	Broadca	st	CI	20	Broa	dcast
Sulfur	30 10/ ac					S	9	Band (Tr	rial)	S	9	Band (Tr	ial)	s	9	Band	(Trial)
Boron						в				в			_	в			
Zinc						Zn				Zn		- mn	- - -	+ ~	' к лс		
Manganese						Fe				Fe		ompa			IVIC	50	
Copper						Mn			_	Mn	σι	lidel	ine	es			
Magnesium	0.5 ppm	*****	*****			Cu	2	Band		Cu	2	Band		Cu	2	Ba	nd
Calcium						Mg				Mg				Mg			
Sodium						Lime				Lime			_	Lime			
Drg.Matter	2.3 %	*****	***									0% Ra		turation (Typical Range)			
Carbonate(CCE)						Soil p	H B	uffer pH		ion Excl Capacit		% Ca	%			% Na	% H
0-6" 6-24" Sol. Salts	0.36 mmho/cm 0.35 mmho/cm	*****	100.0			0-6" 8 6-24" 8						10 00		, ,			

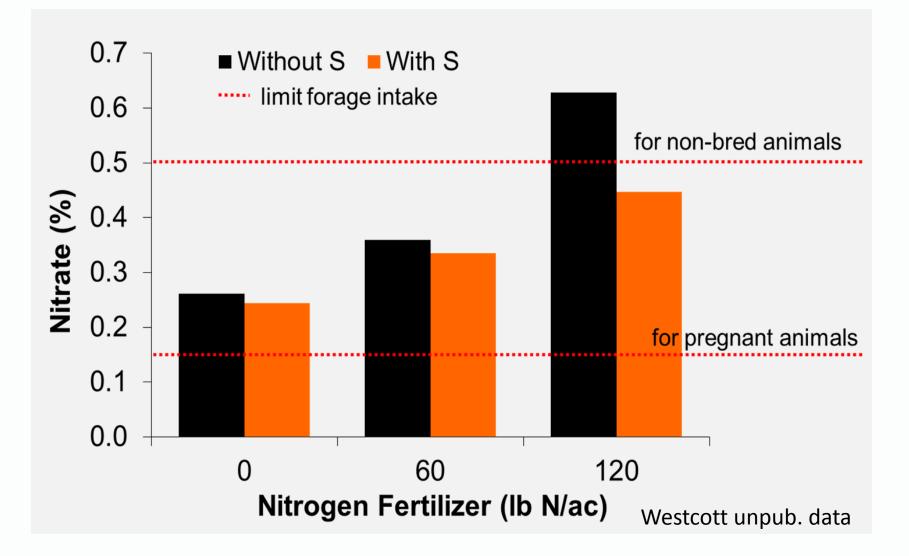
K rates

K guidelines for alfalfa and grass in MT based on soil analysis (Table 19 in EB0161, alfalfa/grass rates revised).

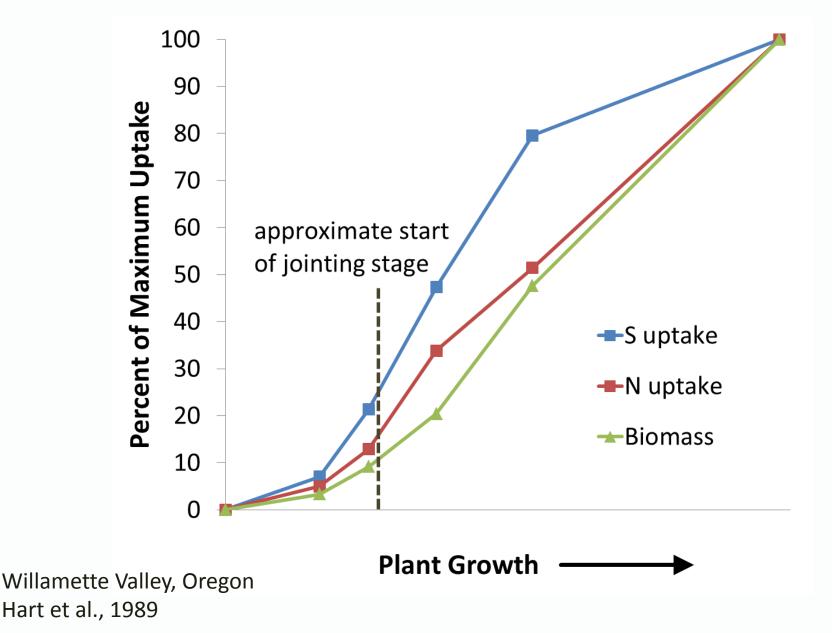
		K So	oil Test L	.evel (pp	om)								
Crop	0	50	100	150	200	250							
		K Fertilizer Rate (lb K ₂ O/acre)											
Alfalfa	240	205	170	140	95	30							
Alfalfa/grass (50/50)	192	165	137	112	76	26							
Grass	80	70	60	45	30	15							
If soil test is above	If soil test is above 250 ppm then use removal rate												
38 lb K ₂ O/ton grass	, 53 lb/to	on alfalfa											

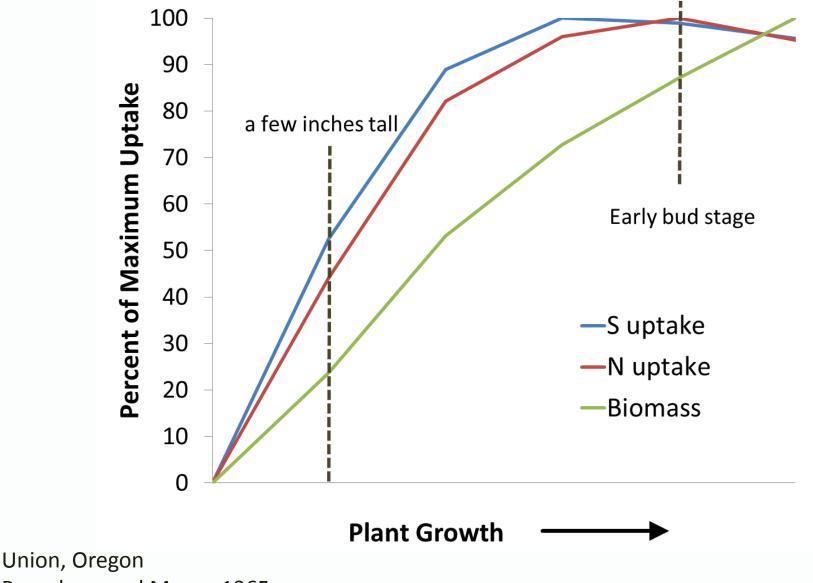
Sulfur (S)


- Useful on sandy, acidic or low organic matter soils, especially after high rainfall (sulfate leaches) or in spring with cool soils
- Soil tests are not reliable
- Use visual symptoms and field history or tissue sampling. If < 0.22% S in top 6 inches of alfalfa (early bud stage) then should get a yield increase S.


• S > 0.30% can cause livestock health problem

S influence on forage quality


- N conversion to protein requires S
- Increased S can lead to increased protein, digestibility and reduced nitrate concentration
- 25 lb S/ac on dryland alfalfa and alfalfa/grass mix increased forage protein 0.8 points (Fertilizer Fact 27)


S influence on annual forage quality (western Montana)

Provide S before start of jointing stage in grass

Provide S early for alfalfa

Pumphrey and Moore 1965

General timing considerations for forage fertilization

- If sub-irrigated, fertilize for high yield potential but apply P in fall
- Irrigated/wet meadows apply nutrients in spring
- Late fall/early spring timing for cool season mix (except on sandy soil),mid-May for warm season mix

Fertilization strategy

- If a field containing < 75% legumes will be rotated into a different crop soon, consider N for immediate gain
- If goal is low input, long-term sustainable production rather than prime quality hay, adequate P and K are key and cheaper than re- or interseeding
- If you need to buy hay or rent pasture, you should consider fertilizing

P and K fertilization strategy

- Immobile nutrients can be banked know soil test levels and if low, build up P and K when prices low
 - A single 100-400 lb P₂O₅/ac on dryland alfalfa produced similar yield, protein and profit as same amount divided over 5 annual applications (central Alberta, Malhi et al. 2001).

N, P, K for new seedings

- Base N, P, K rates on soil tests
- If seeding on fallow, OM >3% provides adequate N for 2-3 years
- Do not exceed 60 lb N/acre in the first year
- If N is banded or seed placed do not exceed 10-15 lb N, P as 11-52-0, or (N + K₂O)/acre to reduce risk to seedlings
- Build up soil P and K levels prior to seeding
- Safe rates of additional P and K seed placed can increase seedling establishment, MAP is safer than DAP

Summary

- Nitrogen, phosphorus, potassium, and sulfur can all increase forage yields
- Economic benefits often aren't realized in the first year (so don't base advice on 1 yr studies!)
- Soil testing is essential for determining fertilizer needs
- Select the right rate, source, timing and placement

Pick up a copy or download these 2 Extension Bulletins

SOIL NUTRIENT MANAGEMENT FOR FORAGES PHOSPHORUS, POTASSIUM, SULFUR AND MICRONUTRIENTS

Kathrin Olson-Rutz Research Associate Clain Jones Extension Soil Fertility Specialist

Department of Land Resources and Environmental Sciences, Montana State University, Bozeman

new 2014 EB0217

SOIL NUTRIENT MANAGEMENT FOR FORAGES

Kathrin Olson-Rutz Research Associate Clain Jones Extension Soil Fertility Specialist

Department of Land Resources and Environmental Sciences, Montana State University - Bozeman

new 2014 EB0216

Questions?

Photo by Ann Ronning Additional info at: http://landresources.montana.edu/soilfertility