Fertilizing your Garden Gallatin Gardeners Club

March 2, 2020

Image by K. Olson-Rutz

Clain Jones, clainj@montana.edu 994-6076

MONTANA

College of AGRICULTURE MONTANA AGRICULTURAL EXPERIMENT STATION

EXTENSION

Hands-on is the best way to learn, but we'll use clickers because....

- 1. I just had my nails done33%
- Clicker training isn't just 33% for dogs
- There isn't enough dirt on 33% the floor to get a good soil sample

Today's topics

- Present what a soil test tells you
 - Soil nutrients
 - Soil properties
- Provide fertilizer guidelines for gardens
- Compare fertilizer sources (compost, manure, fertilizer)
- Present plant symptoms of nutrient deficiencies
- Explain limitations, to know which soil properties you can influence

Why should home gardeners know something about soil nutrition?

- To grow healthy plants and tasty vegetables
- To protect the environment
- For efficient use of resources (water and \$)

How do I know what to add to my soil???

Six questions to ask yourself before you add fertilizer

- **1.** Which elements do I need (N, P, K, S, etc.)? Soil test
- 2. How much do I apply?
- **3.** What type of material do I use?
- 4. Which application method is best?
- 5. When is the best time to apply it?
- 6. Will I get a return (\$ or environmental) on my investment?

Soil tests help to

- Identify nutrient deficiency or imbalance
- Calculate fertilizer rates
- Increase yield and/or save on fertilizer costs, and decrease environmental risks

Soil tests are

- Best done in early spring, but not when soil is wet
- Perhaps best done in late fall in our climate

Soil laboratory vs home test kits

	Test	Kit cost	Cost/sample		
Test kit	N, P, K, pH	\$15 - \$750	\$1.50 - \$7.50		
Lab	N, P, K, pH, salts	\$17 per sample + shipping			

- Soil sample treatment: reagents in test kits can get old/go bad
- Test method used: e.g. Olsen vs Bray P
- Format of results: Values vs rating
- 4 home kits tested, 1 provided results ≈ lab analysis, others' results moderately to far off (Sharma and Chatterjee, Crops & Soils Mar. 2019). Accurate one most expensive.
- Before trusting a soil test, calibrate results against standard soil test methods.

How much fertilizer do I need to apply?

- Estimate based on soil test results, crop needs and surface area
- Provided on soil test results. Make sure based on DESIRED CROP (e.g. lawn, garden, trees/shrubs) and MT GUIDELINES
- Usually in pounds per 1,000 square feet, or pounds per acre
- MSU publications listed at end provide guidelines and example calculations

What if lab doesn't provide an N recommendation

For N rate:

convert ppm to lb N/acre
 (ppm x 2 x actual depth in inches)/6
 ppm x 2 x 6/6 = 20 lb N/ac

2. Use %OM

3. Compare to MSU Guidelines

See table in The Soil Scoop or MT200705AG

Soil Test	Organic Matter (%)					
Nitrate - N	< 1.5	1.5 – 3.0	> 3.0			
lbs /acre		lbs/1000 sq.ft.				
<20	4	3	3			
20-40	2	2	2			
40-80	1	1	0.5			
>80	0	0	0			

What if lab doesn't provide a P recommendation

P rate: MSU guidelines are based on Olsen P. Bray works in pH < 7.3 Olsen works pH > 6 Mehlich3 works for range of pH.

Which P test should be used in this soil?

Table in The Soil Scoop or MT200705AGNo additional P needed

	Olsen P (ppm)							
	< 4	Ĺ	4 – 8	8 – 3	12	12 – 10	6	> 16
lb P ₂ O ₅ /1000 sq. ft.	5	4		3		2		
	K (ppm)							
	< 75		75 –	75 – 150		0 – 250		>250
lb K ₂ O/1000 sq. ft.	3		2			1		0

Addition of micronutrients

- Micronutrients are rarely lacking
- Read the label
- The challenge is ability to evenly apply tiny amounts

Questions?

On to conventional vs organic materials

Feed the plant or feed the soil that feeds the plant

Conventional/chemical

- No carbon
- Easy to store
- Higher nutrient concentration
- Custom formulated
- Easy to use
- Liquid or solid available
- Usually provide quickly available nutrients

Compost/manure

- Bulkier
- Nutrient content low but diverse
- Nutrient content difficult to quantify
- Supplies organic matter
- Takes time to 'release' nutrients

Compost can never be applied in excess

- Compost can create excess N, P and K.
- N can contaminate ground water, P can contaminate surface water and excess P and K can limit uptake of other nutrients

Approximately how much total N, P, and K does 1" of manure compost supply?

		Ν	P_2O_5	K ₂ O	
		II	os/1000 sc	ı. ft.	
	Removed annually ^{1.}	2.3	0.5	2.7	
1.	Added by 1" manure	40	15	40	50%
2.	Added by 1" manure	6	1	6	50%

To add 5 lb N/1000 sq. ft. takes approx. 500 lb manure compost or 11 ton/acre

^{1.} Univ. Mass, Michigan State, Oregon State, Morris et al., 2007

What happens if you meet N needs with manure?

> Rapid excess buildup of P and K by adding 1" manure compost annually

Adapted from Hartz 2009 UC Davis Symposium

 Of 67 Midwest gardens 92% had excess P and 88% excess K after just 1 to 6 years of 'uninformed' fertilization with composted dairy manure (Hansen unpub data, Ohio State Univ)

Considerations when fertilizing with manure

- Good source of micronutrients
- Make sure it is composted
- Be aware of:
 - Residual herbicide risk, bioassay (use pea or tomato seed/seedling) if not SURE
 - Salt
 - Weeds and pathogens
- Easy to over apply N, P and K
 - Nutrient imbalance
 - Water contamination by leaching and runoff

WA State Univ. Extension

How much organic matter?

- 1" manure compost \rightarrow ~ 1.5% O.M.
- 1" plant compost \rightarrow ~ 3% O.M.

Why the difference?

Manure compost $\approx 20\%$ O.M. Yard/kitchen compost $\approx 40\%$ O.M.

 5-8% O.M. is optimal – O.M. is not the cure-all for all soil ailments. Sand may be a missing element to improve tilth and aeration for a very clayey or silty soil. Plant roots also help soil health. Consider cover crops. Adding organic material is good, but...

How can you increase N and soil organic matter without adding too much P and K?

 Add high C organic matter (dry leaves, wood shavings, straw, peat), BUT, high C ties up N

 Add organic matter based on P needs and add N with chemical fertilizer, organic fertilizer such as blood meal, or plant legumes

Image by K. Olson-Rutz

Which of the following has a similar N:P as removed by vegetable harvest?

20% 20% 20% 20%

- 1. Manure compost
- 2. Yard compost
 - 3. Green/food compost
 - 4. Fall leaves
- 5. Green pine needles

Image by M. Olson

N, P, K added by 4000 lbs $\approx 1''$ material/1000 sq. ft.

	Ν	P_2O_5	K ₂ O	N:P ₂ O ₅
	lbs/1000 sq. ft.			
Annual veg harvest ¹	2.3	0.5	2.7	5:1
Manure compost ²	40	15	40	3:1
Yard compost ³	58	8	12	7:1
Green/food compost ⁴	15	9	30	1.6:1
Fall leaves ⁵	40	9	18	5:1
Green pine needles ⁶	57	12	25	5:1

1. Univ. Mass, Michigan State, Oregon State, Morris et al., 2007

2. MSU 3. Maryland Urban compost LeafGro and SmartLeaf

- 4. Waste Resources Action Programme of Wales
- 5. Heckman and Kluchinski 1996 6. Pietrzykowski et al., 2018

When using legumes to supply N, which is true?

25% 1. Legumes fix very little of their own N if soil N is sufficient

- 25%2. Legumes seeds must be inoculated annually before planting
- 25% 3. The rhizobia that help legumes fix N are not legume specific
- 25% 4. Soil critters not used to legumes get digestive upset

Which bean plant is/was actively fixing N?

Questions?

On to other factors that influence soil nutrient management

What to else look for on a soil test report? Factors affecting plant health and production

Factor	Value	Impact/consider		
Soil organic	≤ 1 (%)	Minimize bare soil, increase N, add legumes		
matter	> 3 (%)	Extra N for heavy feeders (e.g. tomatoes, squash)		
	< 5	Poor seedling establishment		
Soil pH	< 6	Poor legume nodulation		
	> 8.3	Nutrients tied up, possibly high Na		
Soluble salts (EC)	> 4 (mmhos/cm)	Too saline, water stress, nutrient imbalance		
Soil texture and	CEC	Water and nutrient holding capacity		

Gallatin Valley garden soil test report – info provided

http://landresources.montana.edu/soilfertility/documents/PDF/SoilTextureJarTest.pdf

Texture Effects on Soil Properties

	Drainage	Water holding capacity	Aeration	CEC
Sand	excellent	poor	excellent	low
Silt	good	good	good	medium
Clay	poor	excellent	poor	high

Soils with large surface areas, such as clay and organic matter, have more cation exchange capacity and surface area and therefore are generally more fertile.

Texture effect on soil properties

Water holding capacity would seem a benefit. But, what are problems in clay soils?

- Surface pooling and runoff
- Compaction
- Drowned roots

Questions?

On to pH and Cation Exchange Capacity (CEC)

Soil pH

- 1. Vegetables vary in their preferred soil pH
- **2**. Legumes prefer pH > 6 to fix N

pH affects soil nutrient availability

Low pH, acidic soils – may limit N, Ca, Mg, Mo because they don't stick tight and can leach away (Fe) or form minerals (P)

High pH, alkaline calcareous soils – may limit P, Fe, Mn, B, Cu, Zn because they stick tight to the soil, plant can't get them

What is the best option to lower pH in highly calcareous soils?

- 17% 1. Add elemental sulfur (S)
- 17% 2. Add gypsum (CaSO₄)
- 17% **3**. Add pine needles
- 17% (4.) No reasonable option to lower significantly and QUICKLY on LARGE scale
- 17% 5. Use ammonia based N fertilizers (e.g., urea)
- 17% 6. Plant legumes

Adding elemental sulfur

AgVise Laboratories

What might happen if you add 230 lbs S/1000 sq. ft.?

- Soil S levels may become toxic
- Soil salt levels may become toxic
- You spend \$366/1000 sq ft

Select plants suitable to your soil's pH

The Mission and Flathead Valleys grow blueberries, the Gallatin Valley grows sweet peas!

Cation Exchange Capacity (CEC) the parking spaces for nutrients in the soil

- CEC is the total neg. charge on a soil (meq/100 g)
- A high CEC soil (> 15) has the capacity to better attract and hold nutrients with positive charges, e.g. K⁺, Zn⁺², NH₄⁺
- Large surface area (clay, SOM) ≈ larger CEC
 ≈ generally more fertile.
- What else might high CEC soils hold onto?
 Herbicides
- CEC of mineral soil is hard to change but can slowly change SOM

1 Tbsp has surface area of a football field

1 Tbsp sand has surface area of a kitchen table

Management influenced by CEC and texture

Water

- low CEC soils short frequent irrigation (daily) to avoid leaching nutrients
- high CEC soils tend to be clay, slow irrigation less often (e.g., low flow emitters, every 3-4 days)

Nutrients

- low CEC soil a little at a time to avoid leaching loss
- high CEC incorporate to avoid runoff and get to plant roots

Low soil organic matter is rarely an issue in gardens

Questions?

On to visual assessment

Visual assessment

- May identify what has been lacking to this point, likely can correct in time in garden environments.
- Sulfur soil tests are not reliable. Use visual symptoms (yellow or light green upper leaves)

Image by K. Olson-Rutz

Pea image by C. Jones **Examples posted at**

Tomato image from Wikipedia

Image by IPNI

http://landresources.montana.edu/soilfertility/nutrientdeficiencies.html

Visual assessment of tissue

Other issues can cause symptoms that look like nutrient deficiency symptoms

- Insects
- Salinity
- Moisture stress
- Disease
- Herbicides

Ontario Ministry of Ag., Food & Rural Affairs

- Understanding soils leads to wise nutrient use and promotes maximum plant health and yields
- Soil testing is an important tool to help prevent or correct plant growth problems, and protect the environment from over-fertilization
- The foundation of a healthy garden is a healthy soil
- Observe and adjust to your specific conditions

Questions?

For additional information:

Home garden soil testing and fertilization guidelines

http://landresources.montana.edu/soilfertility/home-gardening.html

Nutrient deficiency symptoms <u>http://landresources.montana.edu/soilfertility/nutrientdeficiencies.html</u> *The Soil Scoop*

http://landresources.montana.edu/soilfertility/soilscoop.html

MSU Extension catalog

http://store.msuextension.org

- Using Manure as Fertilizer (EB0184)
- Home Composting (MT199203AG)
- Manure Composting (MT201206AG)