Management Practices to Minimize Urea Volatilization

Malta, MT November 16, 2010
Snowed out, given by streaming video in Feb 2011
by Clain Jones, Extension Soil Fertility Specialist and Kathrin Olson-Rutz, Research Associate clainj@montana.edu; 994-6076

AGRICULTURE

MAKING A DIFFERENCE IN MONTANA COMMUNITIES

Factors Increasing Volatilization

- 1. High Soil pH and Temperature
- 2. Windy
- 3. Low Cation Exchange Capacity (CEC). WHY?
- 4. Low buffering capacity (resistance to pH change)
- 5. High soil moisture/humidity
- 6. Little Rainfall/Irrigation following fertilization
- 7. High Ground cover/vegetation/residue. WHY?
- 8. Low Soluble and Exchangeable Calcium

Bottom line: Large number of factors make volatilization amounts VARIABLE and difficult to predict.

A first look at ammonia volatilization losses from surface-applied urea

Richard Engel, Clain Jones, Jeff Whitmus

Montana State University

Project Objectives

- How much N as ammonia are we losing from applications of surface urea (fall, winter, and early spring)?
- Is this a significant economic loss to Montana producer?
- If losses are significant, then how do we mitigate losses?

Research approach

- conduct on-farm trials no till systems
- focus on Triangle Region
- diversity of soils (texture, pH)
- ammonia emissions quantified over 8wk gas sampling campaign following fertilization (urea, NBPT-coated urea)

Integrated horizontal flux method

- preferred approach for <u>quantifying</u> gas loss
- moderate size plots (~0.3 acre)
- continuous measurement of ammonia loss over time

mast and shuttles

Shuttles

 traps for collecting ammonia, idea & design developed in Australia (Leuning et al., 1985. Atmos. Environ)

rotate on pivot & face into wind

Two examples of field trial results from west Havre field site (Kaercher farm)

- Hill County
- Phillips-Elloam silt loam
- ▶ pH 6.0
- no till winter wheat
- Campaigns 2 and 5 conducted in the identical field

Campaign 2: October 9, 2008. Air temp = 45 F, Soil temp = 43 F

Campaign 5: March 26, 2009. Air temp = 21 F, Soil temp = 34 F

Questions so far?

Campaign #2 – low NH₃ losses observed

- October 9, 2008 application, air-temp. 45 °F, dry soil surface
- no rain for <u>24 days</u> and then Nov. 2-5 field site received 0.98"ppt.

1 wk post-fertilization prills not dissolved

Campaign #2 - Kaercher farm

Mean Air Temp ~ 42 F Mean Soil Temp ~ 41 F

Campaign #5 - high NH₃ losses observed

Fertilizer applied on Mar 26, 2009 light snow on soil surface and air temp = 21 F

soil surface with fertilizer prills beginning to dissolve

Campaign #5 - Kaercher farm

Precipitation no rain 0-2 wks 1.54" 2-8 wks

Mean temperature

Soil = 38 °F

Air = 39 °F

Conclusion: High losses observed even though temperatures were cold!

Peterson farm site - background

- ▶ 28 miles NW of Havre
- Telstad-Joplin loam
- ▶ pH 5.5
- no till winter wheat
- Campaigns 3, 4, and 8

Campaign #4 – Peterson farm

Fertilized applied – March 25, 2009 "light snow & air-temp. 18 °F"

soil surface frozen, 30 °F

Campaign #4 -Peterson farm

Precipitation

0.01'' = 0-2 wks

0.89'' = 2-8 wks

Soil temp = 30 F

Air temp. = 18 F

Campaign #8 – Peterson farm

Fertilizer applied - October 19, 2009 air-temperature = 43 °F soil surface dry

Campaign #8 – Peterson farm

Precipitation

only 0.25" over 8 wks (7-8 days post-fertilization)

Questions so far?

Campaign 9 & 10 — Willow Creek Brocko silt loam

Calcareous soil, pH 8.3

Campaign 9 – Willow Creek – Jan. 27

Campaign 9 – Willow Creek – Feb. 10

Campaign 9 - Willow Creek - Feb. 17

Campaign 9 – Willow Creek – Feb. 17

Campaign 10 – Willow Creek

Results

- Feb 26 application (no snow)
- ppt(0-9 wks) = 0.9

inches

• NBPT - 7 wks

activity

Campaign Summary (% N loss)

Campaign	Fertilization date	Urea	NBPT-urea
1	April 3, 2008	8.4	4.4
2	Oct 8, 2008	3.1	1.4
3	Nov 14, 2008	31.5	4.0
4	March 25, 2009	35.6	18.0
5	March 26, 2009	39.9	18.1
6	Oct 6, 2009	10.7	3.3
7	Oct 13, 2009	10.4	4.8
8	Oct 19, 2009	15.7	3.4
9	Jan 27, 2010	24.3	9.3
10	Feb 26, 2010	44.1	11.9
11	March 29, 2010	6.3	1.7
12	April 20, 2010	14.7	1.4
Average		20.4	6.8

wide range in N loss amounts

http://landresources.montana.edu/ureavolatilization

Summary – take home messages

- ✓ Significant ammonia losses (30-40% of applied N) from surface-applied urea can occur even though soil temperatures are near freezing!
- Soil moisture conditions at surface that dissolve urea granules (i.e. <u>prolonged damp</u>) without rain promote high ammonia losses (*more common to find these conditions in MT during late fall or early spring*)
- ✓ NBPT (Agrotain) reduced losses 62% over untreated urea

Questions so far?

If ~20% of broadcast urea is lost, why didn't MT research from the 1990s show large yield/protein losses compared to ammonium nitrate and/or subsurface banding? (Jones et al. 2007)

- 1. Adequate precipitation may have occurred after application.
- 2. Urea takes 2 5 weeks to become available whereas AN is immediately available for plants and for other losses-urea's 'slow release' property may increase its efficiency, making up for loss.
- 3. About 50% of N uptake comes from fertilizer (rest from soil). So 20% of 50% is 10% difference in N availability-might not make a statistically SIGNIFICANT difference (though still a bottom line difference).
- 4. With longer term no-till could 'urease' enzyme concentrations have increased? It is known that residue contains more urease than bare soil.
- 5. With longer term no-till, some calcium has likely leached out of surface soil. Calcium is known to decrease volatilization and most source studies were conducted last decade.

Effect of Urea Placement on Hays Annual Forage Yield

Effect of irrigation rate on urea volatilization (Horneck, unpub data)

Does ½ inch of rain also stop volatilization? (Horneck unpub data)

Not if spread out over 3 days

Effect of N source applied with the seed on dryland spring wheat yield

What should you do to minimize volatilization?

- 1.Do not apply urea on moist ground UNLESS a snow or rainstorm is forecast to drop at least ½ inch of rain in a day. Preferably more (unlikely unfortunately!).
- 2.If you irrigate, apply ½ inch of irrigation after urea application.
- 3. Apply urea below the surface either in a midrow band, 2 inches from the seed or with the seed with a 'protected' product.
- 4. Consider seeding right after urea application to cover some urea; wider openers will help with this. (We're currently testing effectiveness of this practice)
- 5. Consider using Agrotain or ammonium nitrate (if available) if can't apply during a low risk time.

Other Resources

 Soil Fertility information: <u>http://landresources.montana.edu/soilfertility</u>

Questions?