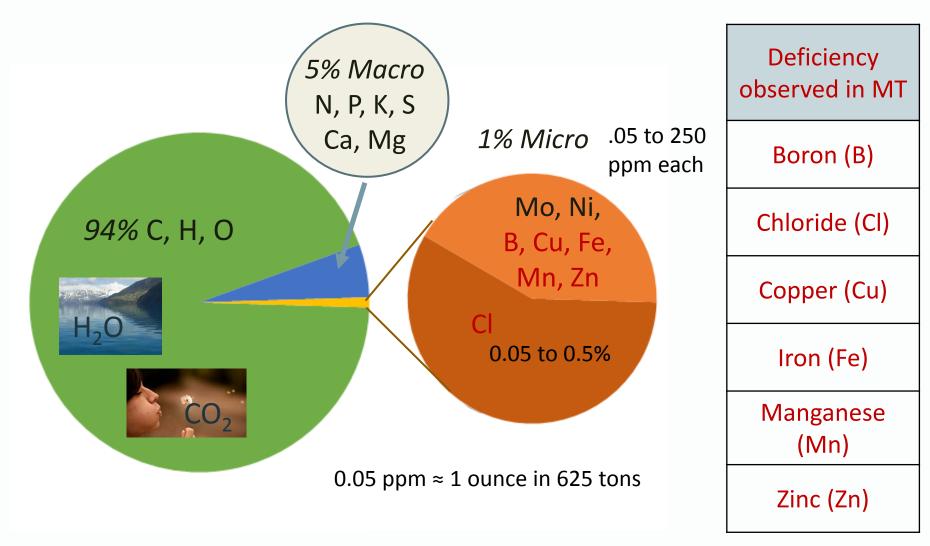
MICRONUTRIENT TESTING & MANAGEMENT IN BARLEY, CORN & PULSES

Barley and Sugarbeet Symposium Billings, MT January 10, 2017

Clain Jones clainj@montana.edu 994-6076



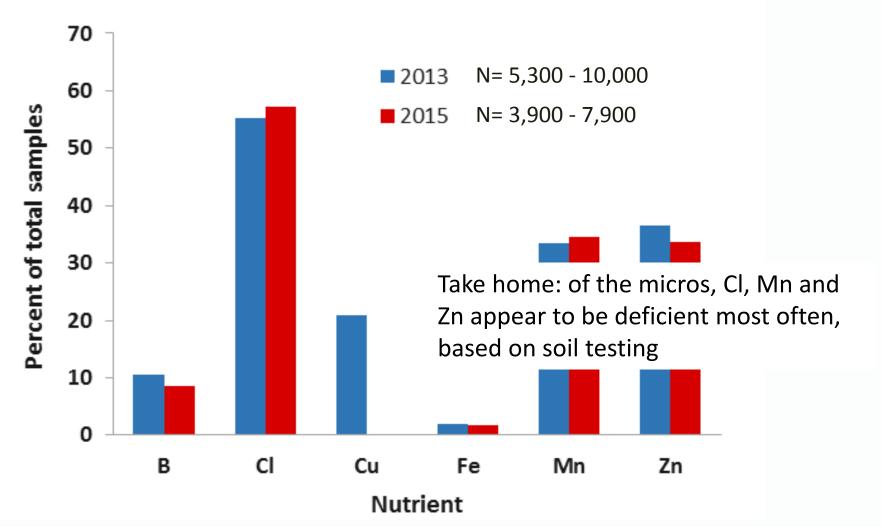
MSU Soil Fertility Extension

Goals Today

- Discuss soil and tissue testing for micronutrients
- Illustrate deficiency symptoms
- Provide general guidelines for micronutrients
 - sources
 - rates
 - application methods
 - timing

Nutrient amounts in dried plant material

The micronutrients are simply needed in smaller amounts by the plant than the macronutrients.


Conditions that affect availability to plant

Nutrient	Limiting conditions	Most Montana soils are generally
Boron Chloride	Low Cl in rain Very wet or very dry Coarse, sandy <2% SOM (B) pH >7.5 (B)	alkaline (pH > 7.0) Early growing season often cold soils and either
Copper Iron Manganese Zinc	Cool and wet <2% SOM Poorly drained (Fe) Coarse and dry (Cu) pH >7.5	dry or very wet

Soil testing

- Use in combination with other tools
- Tests are not highly accurate, precise, or consistent among labs
- Although published
 - Critical soil levels are not well established. In 87 corn fields, B and Zn soil levels were correlated to yield, not Cu, Fe, Mn (Stewart 2016)
 - Correlations between soil (& tissue test) levels and fertilizer rate guidelines are not well established

MT soils with deficient micronutrient concentrations (source: Agvise)

There may be bias because more samples may be submitted when deficiency symptoms are suspected than when not

Reliability of soil test results from a single soil

	Zn (DTPA, ppm)	Cu (DTPA, ppm)	B (hot water, ppm)
Range of concentration reported by the labs	0.5 – 1.0	0.2 - 1.0	0.2 - 1.8
Uncertainty around each reported value	± 0.12	± 0.08	± 0.12
Possible 'true, actual' value	0.38 – 1.12	0.12 – 1.08	0.08 - 3.0

Based on 95% confidence, from a soil sample evaluated 95 times in the ALP Program 2006-2012. Miller, 2013.

Variability among labs. If comfortable, use the same lab over time. Ask if a member of a proficiency program (e.g., ALP, NAPT); if so, ask if can see results

	Nutrient	In The Soil	In	nterp	retati	ion	19	st Cro	p Choice
			VLow	Low	Med	High		Wheat-	High Pro.
								YIEL	D GOAL
Cl	0-24	20 lb/a	C *****	***				50	Bu
	. 0-6	" 14 lb/a	c *****	******			SUG	GESTE	O GUIDELINES
S	6-24	" 36 lb/a	C *****	*****	*****	**		В	and
В							LB/#	CRE	APPLICATION
Zn						<u> </u>	N	11/1	50
							P2O5	36	Band *
Fe Mn							KzO	10	Band (Starter)*
Cu		0.5 mm					сі	20	Broadcast
Mg	Ę	0.5 ppr	<u>n</u> *****	******			s	9	Band (Trial)
Ca			-			┼───┤	в		9-1 1-1
						L	Zn		
for notos providad by laboratory o g				Fe					
k for notes provided by laboratory, e.g.,				Mn					
op 1: 44 lb of 0-0-60 = 20 lb of Cl				Cu	2	Band			
•						1			

Mg

Lime

• Caution: Seed placed fertilizer can cause injury

Micronutrient soil critical levels and fertilizer guidelines

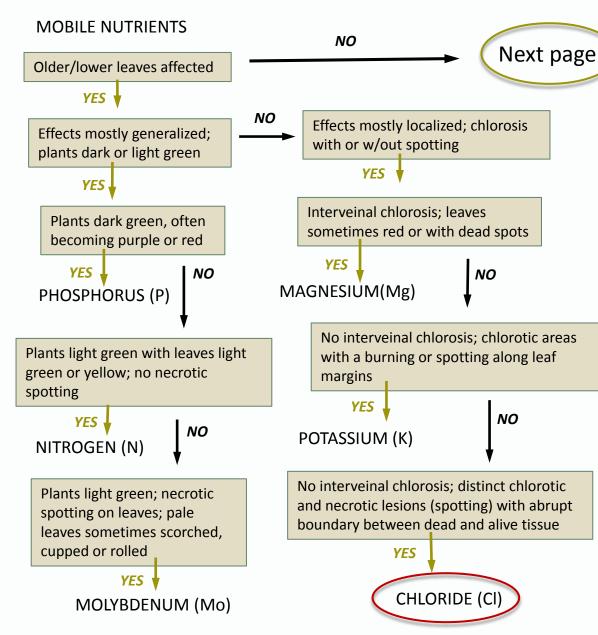
	Critical soil	Fertilizer	Timing	Rate (lb/	/acre)
Nutrient	level (ppm)	form	Spring (S) Fall (F)	Broadcast & incorporate ¹	Seed- placed
Boron	< 0.2 - 1.0	Sodium borate	S	0.5 – 3	NR ²
		Sulfate	S or F	2 - 8	NR
Copper	< 0.1 - 0.5	Oxysulfate	F	2 - 8	NR
		Chelate	S	0.5	0.25 – 0.5
Iron	< 2 - 5	?	?	2 - 5	
поп	< 2 - 5	Chelate	S	NR	NV
Manganaca	< 1.0	Sulfate	S	50 - 80	4 – 20
Manganese	< 1.0	Chelate	S	NR	NR
Zinc	< 0.5	Sulfate	S or F	3.5 – 5	NR
		Oxysulfate	F	5 - 10	NR
		Chelate	S	1	NV

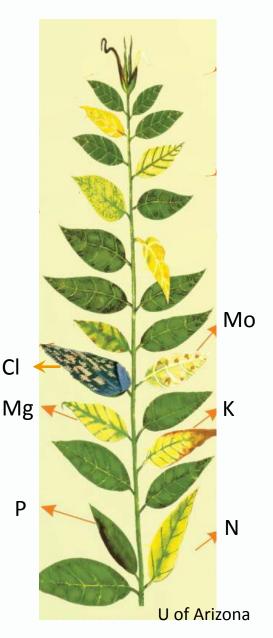
¹Subsurface band is not recommended for any of these fertilizers. ² NR not redommended, NV not verified Sources: Karamanos 2000, Gerwing and Gelderman 2005, EB0161, McKenzie 2016

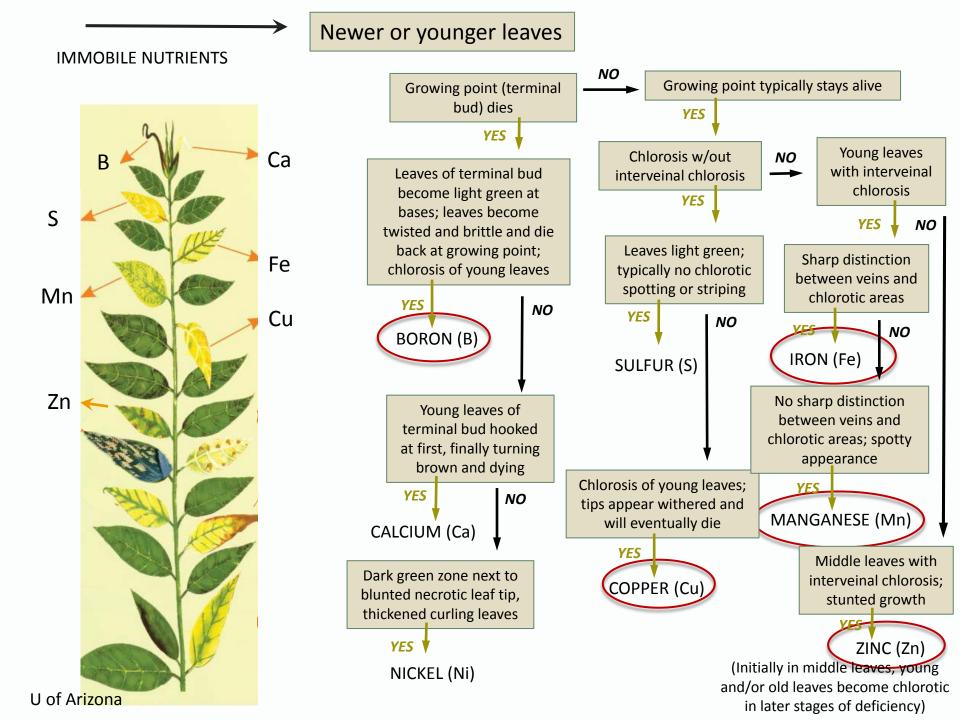
Cl on small grains

- Cl is very mobile so may need to add more if leaching or yield potential is high. 20 lb KCl/acre annually may provide enough.
- Over 210 trials in KS, MN, MT, ND, SD, MB and SK have evaluated CI-response in wheat and barley*
- Significant yield response in 48% of trials*
- Average response of 5 bu/acre*

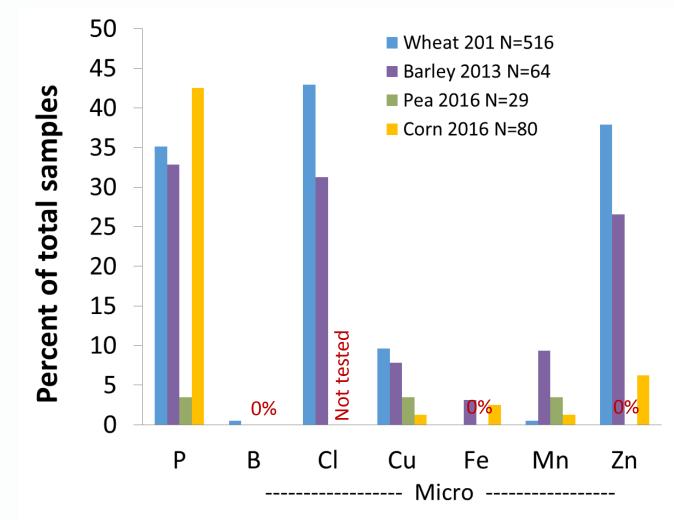
*Source: Cindy Grant, Agriculture and Agri-Food Canada


Questions?


Tissue analysis for in-season micronutrient adjustments


- Visual tissue assessment for potential deficiency See Plant Nutrient Functions and Deficiency and Toxicity Symptoms (NMM 9): <u>http://landresources.montana.edu/nm</u>
- Tissue concentrations other than for chloride there are no MT guidelines for micros based on tissue tests. In 87 corn fields, there was a positive correlation between tissue test concentrations and yield only for Cu (Stewart 2016), not for B, Fe, Mn, Mg or Zn.
- Once deficiency observed, potential yield may already be reduced

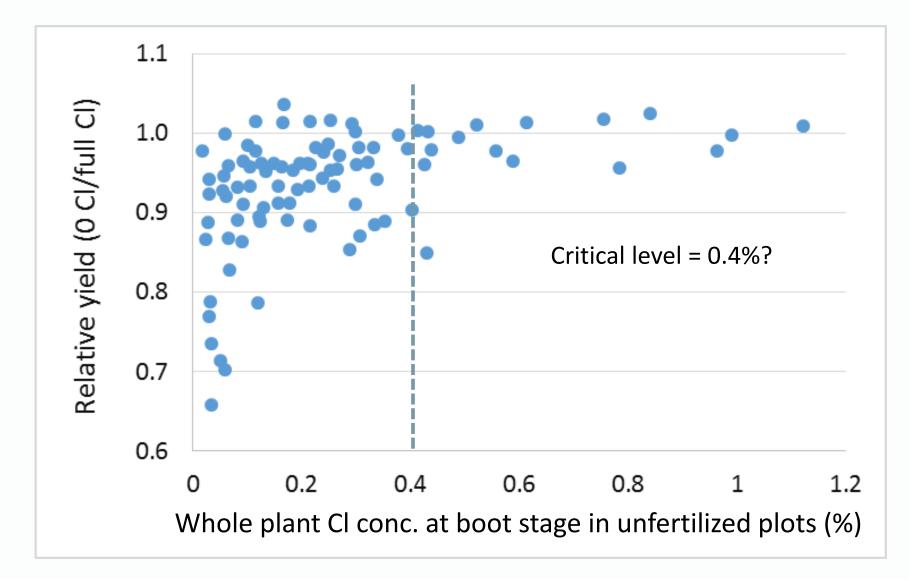
Visual tissue assessment


In Nutrient Management Module 9 http://landresources.montana.edu/nm

Wheat, barley, pea, and corn with low or deficient tissue micronutrient concentrations in MT (source: Agvise)

Based on tissue testing, of the micros, Zn and Cl appear deficient most often in barley and wheat. Deficiencies are not common in pea.

P is a greater concern in corn.


There may be error b/c many samples are not the correct plant part and there may be bias because more samples with deficiency symptoms are submitted than w/o symptoms

Published minimum sufficient micronutrient levels in plant tissue

Crop	Sample	В	Cu	Fe	Mn	Zn
			(ppm)			
Barley ¹	Whole plant prior to grain filling	5	3.7	20	15	15
Corn ^{2,3}	Ear-leaf at R1-R2	4-25	3-20	21-250	20-250	20-70

1. McKenzie 2001, 2. Daniel Kaiser U of M, Twin Cities, 3. Voss 1998

Wheat tissue Cl concentration

Fertilizer Fact No.3 96 variety x site trials over 4 Great Plains states

Foliar fertilizer sources and rates

Element	Fertilizer source ¹	Rate (lb/ac) ¹			
Boron	sodium borate	0.3-0.5			
Copper	chelated	0.2-0.25			
Iron	chelated	0.15			
Manganese	Manganese chelated				
Zinc chelated 0.3-0.4					
Best applied in spring Sulfate and oxysulfate are not recommended					

1. Karamanos 2000

Questions?

Mobility and processes that affect availability

Nutrient	Mobility	Limiting processes	Wł
Boron Chloride	Mobile Soluble	Leaching Harvest	im Aff pla
Copper Iron Manganese Zinc	Immobile Insoluble	Harvest Binding to soil or forming minerals	 A O

Why is mobility important?

Affects fertilizer placement

Apply these foliar or in root zone

Common micronutrient forms (Source: Gov. of SK)

Form	Availability	Nutrients	Apply to:	Residual > 1 year
Sulfate (salts)	Water soluble, plant available	Cu, Fe, Mn, Zn B (borate)	Soil or Foliage	Yes
Oxysulfate	Oxide portion not very available, sulfide portion is, should be > 50% water soluble	Cu, Fe, Mn, Zn	Soil	Yes
Oxide	Bound with O ₂ , not soluble, needs to be converted	Cu, Fe, Mn, Zn	Soil	Yes, but is not plant available
Chelate	Plant available form	Cu, Fe, Mn, Zn	Soil or Foliage	No
Manure	Bound in OM	Cu, Zn	Soil	Yes

Micronutrient fertilizer considerations

- Micronutrient availability in a fertilizer source is not guaranteed
- Some fertilizers contain heavy metals in excess of safe levels (Westfall et al., 2005)

Micronutrient fertilizer application timing and method

Timing

- Borate, chelated, sulfate, or high solubility (>40%) oxysulfate forms: Spring
- Oxide and low solubility (<40%) oxysulfate forms: Fall

Method

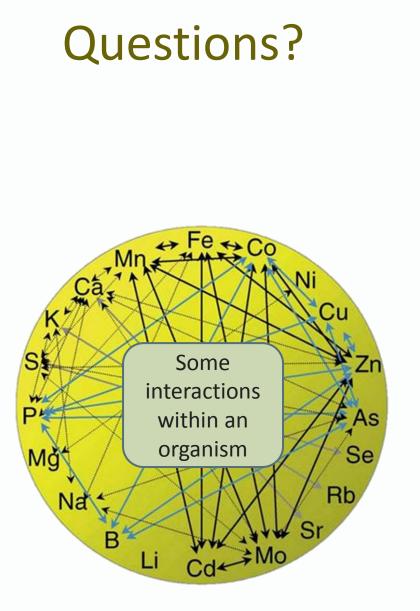
- Broadcast and incorporated is ideal, but challenging to get even distribution of a very small quantity
- Seed-placed and subsurface band is generally not recommended (due to toxicity)
- Foliar applications use less than ½ the suggested rate. Can be done with borate, and chelated Cu, Fe, Mn, Zn

Relative response to micronutrients

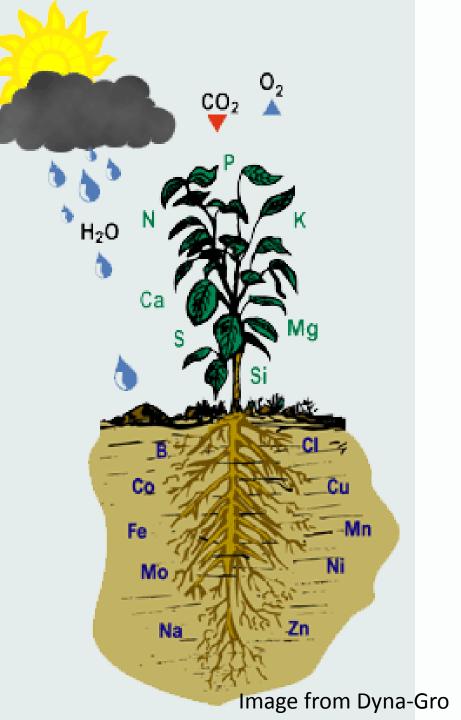
	Response to micronutrient					
Crop	Boron	Copper	Iron	Manganese	Zinc	
Barley	Low	Medium	Medium	Medium	Low	
Corn	Low	Medium	Medium	Medium	High	
Pea	Low	Low	N/A	High	Low	
Sugarbeet	Medium	Medium	High	High	Medium	

Voss 1998

Conclusions


- "Micronutrients should be used when there is an economic benefit to the farmer," – R. Karamanos
- A combination of deficiency symptoms, soil testing, and tissue testing may be best approach at identifying deficiencies. This is NOT an exact science.
- Micronutrient deficiencies are the exception, not the rule
- Cool wet conditions cause deficiency will generally disappear when weather warms
- Too much micronutrient can hurt yield more than not enough
- The main challenge is even distribution of a very small quantity – consider foliar options
- Most conclusive test is growth responses from field strip trials

For more information


Additional soil fertility information and this presentation are available at

http://landresources.montana.edu/soilfertility

- For more information on micronutrients, see Nutrient Management Module 7 (NMM 7)
- For plant nutrient functions and deficiency symptoms, see NMM 9
- For fertilizer placement, look at NMM 11 <u>http://landresources.montana.edu/nm</u>

Baxter 2009

