
Clain Jones clainj@montana.edu 994-6076

MSU Soil Fertility Extension

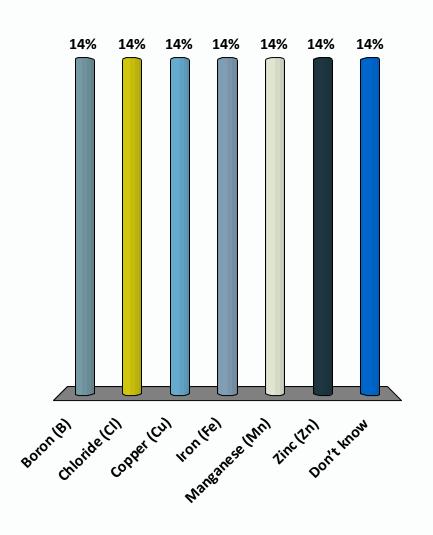
Clickers are better than cell phones because:

- A. You don't listen to Siri giving you wrong directions
- B. They don't need to be turned off during a presentation
- C. They screen calls from telemarketers
- D. They make your dog obey



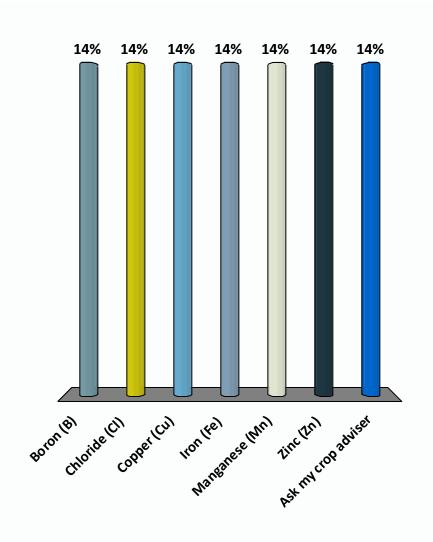
Goals Today

- Define micronutrients and their role in plants
- Illustrate micronutrient deficiency symptoms
- Discuss soil testing for micronutrients
- Explain which micronutrients may be deficient in MT soils and why


Your experience with micro deficiencies (select all that apply)

A.	I don't think I've seen any	20%
В.	I've suspected micro deficiencies based on symptoms, but didn't verify with tissue testing	20%
C.	I've verified micro deficiencies through tissue testing	20%
D.	I've verified micro deficiencies through fertilizer trials	20%
E.	Other	20%

Of which micronutrients do you think you've seen deficiencies? Select all that apply


- A. Boron (B)
- B. Chloride (Cl)
- C. Copper (Cu)
- D. Iron (Fe)
- E. Manganese (Mn)
- F. Zinc (Zn)
- G. Don't know

For which micronutrients have you applied fertilizer? Select all that apply.

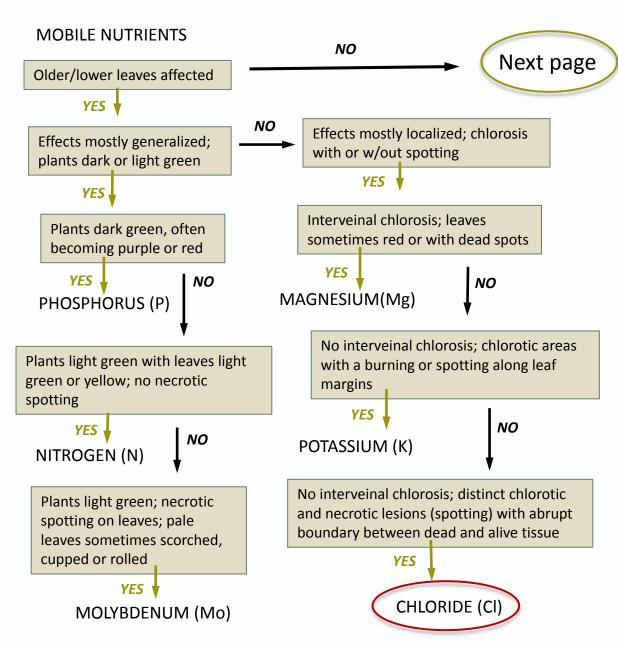
- A. Boron (B)
- B. Chloride (Cl)
- C. Copper (Cu)
- D. Iron (Fe)
- E. Manganese (Mn)
- F. Zinc (Zn)
- G. Ask my crop adviser

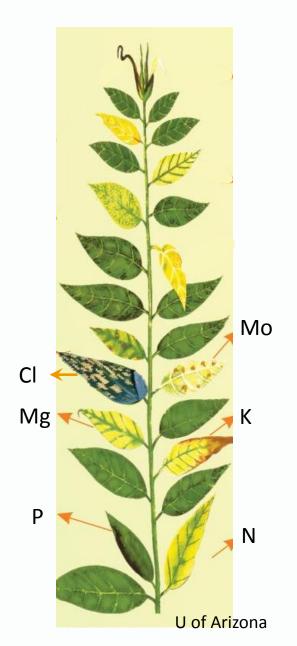
Nutrient amounts in dried plant material

The micronutrients are simply needed in smaller amounts by the plant than the macronutrients.

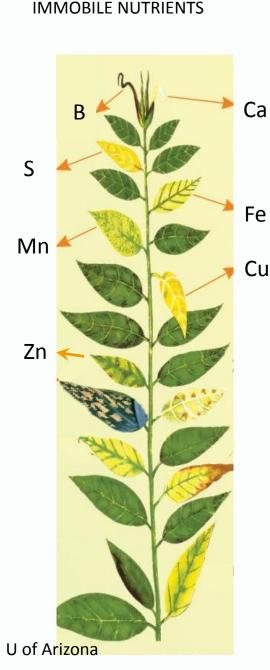
Role of micronutrients

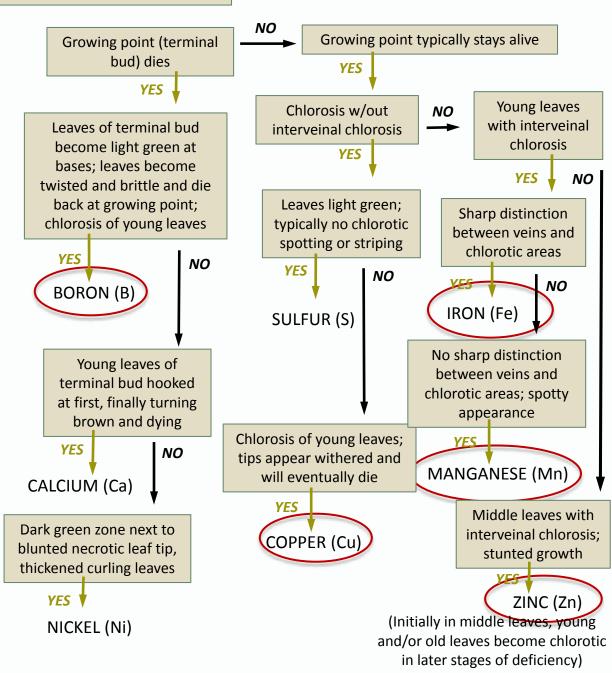
Nutrient	Role in plant
Boron (B)	Sugar transport, carbohydrate metabolism
Chloride (CI)	O ₂ production in photosynthesis
Copper (Cu)	Catalyst for respiration; component of enzymes
Iron (Fe)	Chlorophyll synthesis and in enzymes for electron transfer
Manganese (Mn)	Controls oxidation-reduction systems and photosynthesis
Molybdenum (Mo)	N-fixation and nitrate to ammonium transformation
Nickel (Ni)	Urease enzyme function and seed germination
Zinc (Zn)	Enzymes for metabolic activities


The 8 mineral micronutrients that have been found to be essential for growth of most plants:


Deficiency observed in MT	No known deficiency in MT
Boron (B)	Molybdenum (Mo)
Chloride (CI)	Nickel (Ni)
Copper (Cu)	
Iron (Fe)	
Manganese (Mn)	
Zinc (Zn)	

Visual tissue assessment


In Nutrient Management Module 9


http://landresources.montana.edu/nm

Newer or younger leaves

Questions?

Soil testing is a reliable basis on which to make micronutrient fertilization decisions:

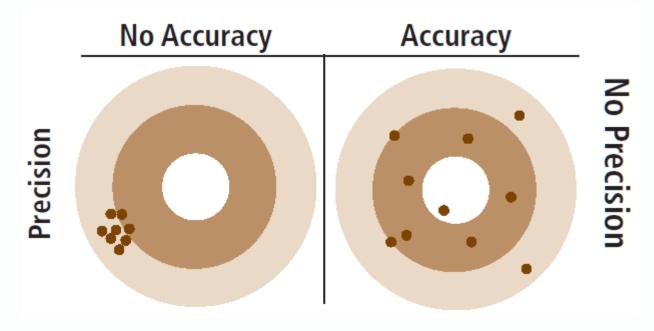
A.	Because nothing other than soil deficiency	20%
В.	causes symptoms to appear Because there are reliable soil test critical	20%
	levels for most micronutrients	2070
C.	Because taking soil samples is better than the gym to build muscles	20%
D.	Because critical soil levels are the same for all varieties within a species	20%
E.	When used in combination with other tools	20%

Micronutrients on soil test reports

Date Sampled Date Received 08/28/2014 Date Reported 8/28/2014

Nutrient In	The Soil	In	terp	retati	on	15	t Cr	op Choic	e	2n	d Cro	p Choic	e	31	d Cr	op Cho	ice
		VLow	Low	Med	High		Whea	t-High Pro.			Wheat-	High Pro.			Barle	y-Malting	j
0-6" 6-24"	15 lb/ac 24 lb/ac						YIE	LD GOAL			YIELD	GOAL			YIEL	D GOAL	
24-42''	63 lb/ac		**				50) Bu			60	Bu			70	BU	
0-24"	39 lb/ac					SUGG	GESTE	D GUIDELIN	NES	SUG	GESTED	GUIDELIN	IES	SUG	GESTE	D GUIDE	LINES
Nitrate	-,						9	Band			В	and			- E	Band	43
TOTAL N =						LB/A	CRE	APPLICA	TION	LB/A	ACRE	APPLICA	TION	LB7.	CRE	APPLI	CATION
Olsen Phosphorus	4 ppm	*****				N	11/1	50		N	14/1	80		N	35	Custo	mized
Potassium	368 ppm	*****	*****	*****	*****	P ₂ O ₅	36	Band	*	P ₂ O ₅	43	Band	*	P ₂ O ₅	35	Bai	nd *
0-24'' Chloride	20 lb/ac	*****	**			K₂O	10	Band (Starte		K₂O	10	Band (Starter	7 III	K ₂ O	10	1	and rter)*
, 0-6" 6-24"	14 lb/ac 36 lb/ac	*****		1	**	CI	20	Broadca	ast	СІ	20	Broadca	ast	CI	20	Broa	dcast
Sulfur		-				S	9	Band (Tr	rial)	S	9	Band (Tr	rial)	S	9	Band	(Trial)
Boron Zinc		-				В				В				В			
Iron						Zn				Zn				Zn			
Manganese						Fe				Fe				Fe			
Copper	0.5 ppm	*****	*****			Mn				Mn				Mn			
Magnesium						Cu	2	Band	ı	Cu	2	Band		Cu	2	Ва	ind
Calcium						Mg				Mg				Mg			
Sodium						Lime				Lime				Lime			
Org.Matter	2.3 %	*****	***				T		Cati	lon Excl	hange	% Ba	se Satı	uratio	n (Ty	pical Ra	nge)
Carbonate(CCE)						Soil p	H	Buffer pH	11100000000000	Capacit	THE CONTRACTOR	% Ca	% M	g º/	6 K	% Na	% H
0-6" 6-24" Sol. Salts	0.36 mmho/cm 0.35 mmho/cm		00000			0-6" 8 6-24" 8	200										

	Nutrient I	n The Soil		In	terpi	retati	on
				VLow	Low	Med	High
Cl	0-24"	20 1	b/ac	*****	**		
S	, 0-6" 6-24"	1.00030030000	b/ac b/ac	CONTRACTOR OF THE PARTY OF THE		Laurence of	**
В							
Zn							
Fe	4						
Mn							
Cu		0.5	ppm	*****	****		
Mg	1						
Ca							


Look for notes provided by laboratory, e.g.,

- Crop 1: 44 lbs of 0-0-60 = 20 lbs of Cl
- Caution: Seed placed fertilizer can cause injury

15	t Cro	p Choice
	Wheat-	High Pro.
	YIELI	D GOAL
	50	Bu
SUG	GESTE	GUIDELINES
	В	and
LB/A	CRE	APPLICATION
N	13/1	50
P ₂ O ₅	36	Band *
K₂O	10	Band (Starter)*
CI	20	Broadcast
s	9	Band (Trial)
В		*
Zn		
Fe		
Mn		
Cu	2	Band
Mg		
Lime		

Soil test considerations

- If comfortable with choice, use same lab repeatedly
- Accuracy and precision = reliability, varies with lab, nutrient and method used

Based on the following table, what could be the 'true' amount of Cu in the soil?

Soil nutrient & method		Uncertainty (precision)
Zn -DTPA (ppm)	0.5 - 1.0	± 0.12
Cu – DTPA (ppm)	0.2 - 1.0	± 0.08
B – Hot water (ppm)	0.2 - 1.8	± 0.12

Based on 95% confidence, from 95 soil samples evaluated in the ALP Program 2006-2012. Miller, 2013.

- A. Enough to sell as wire and buy 33% a new truck
- B. 0.2 1.0 ppm 33%
- C. 0.12 1.08 ppm 33%

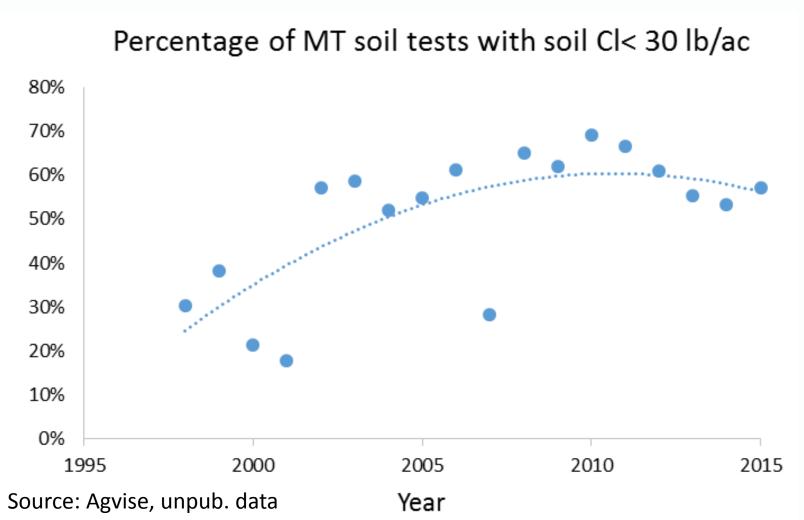
Questions?

Why might we be seeing, or eventually see, more micronutrient deficiencies?

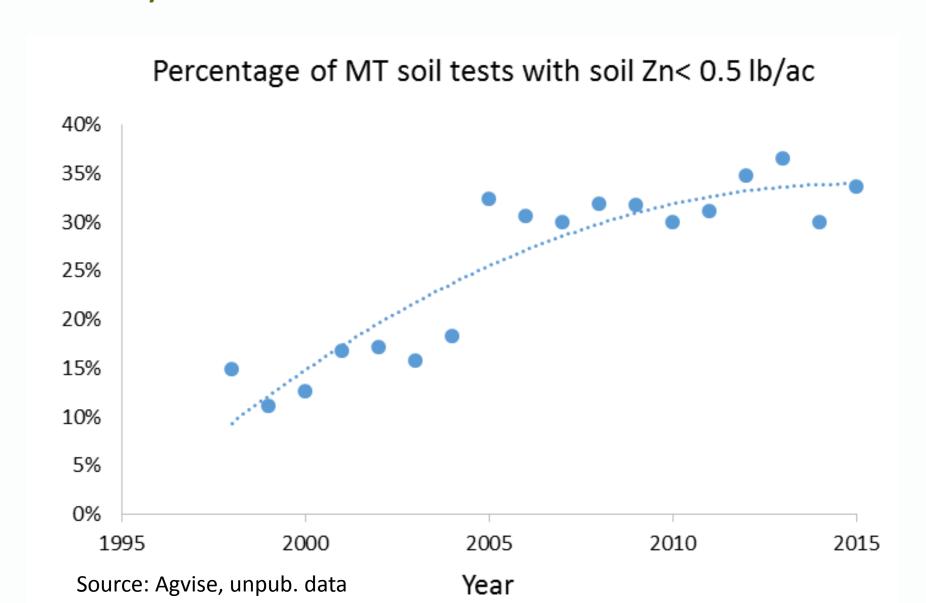
There is a finite amount of micronutrients in the soil. Micronutrient deficiencies will likely increase as:

- Yields and amount removed from field increases
- No micronutrients are added (individually, in manure, or in P fertilizers*)

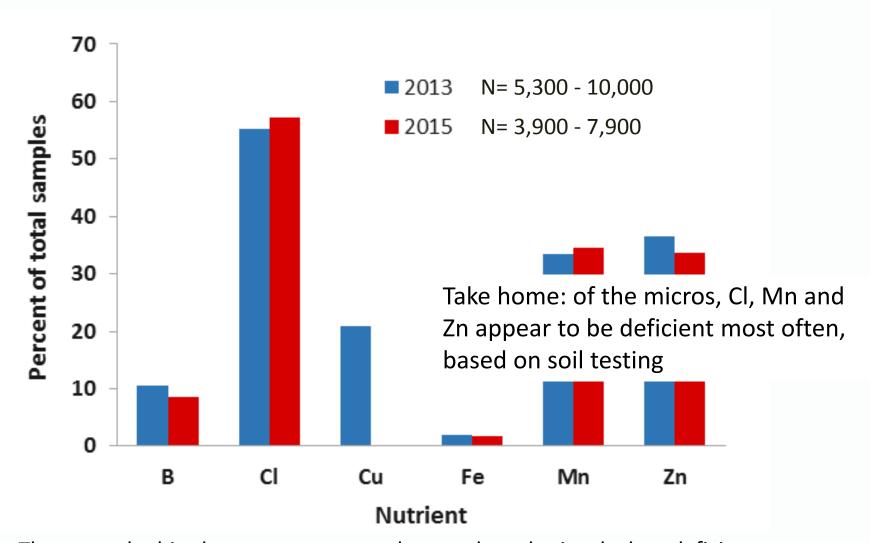
*example: 8-46-0 has 5.5 mg Cu/kg, 386 mg Zn/kg (Raven and Loeppert, 1997)


Selected total and available micronutrients in MT surface soils in past 34 years

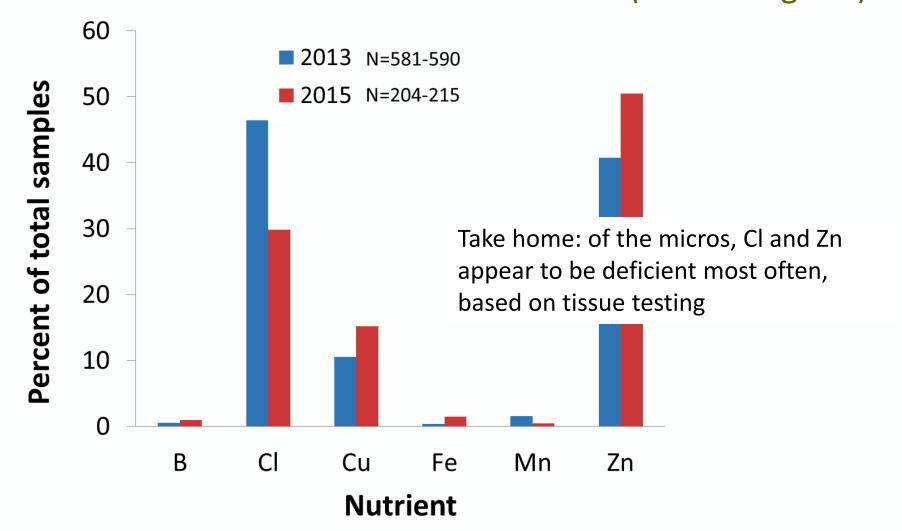
	1979*	(n=301)	2015** (n=4000-8000)
	Total	Available	Available
Nutrient		(ppm in t	op 0-6")
Copper Iron Manganese Zinc	30 38,000 600 50	2.0 15.8 12.4 1.2	1.2 (0.5 crit lev) 20.5 (5 crit lev) 3.7 (1 crit lev) 1.0 (0.5 crit lev)


The majority of metals are bound in minerals or soil organic matter, not immediately available to plants. *Haby and Sims 1979, **Agvise

Have % of soil chloride levels below 'critical level' increased in last 15 years in Montana?


YES!

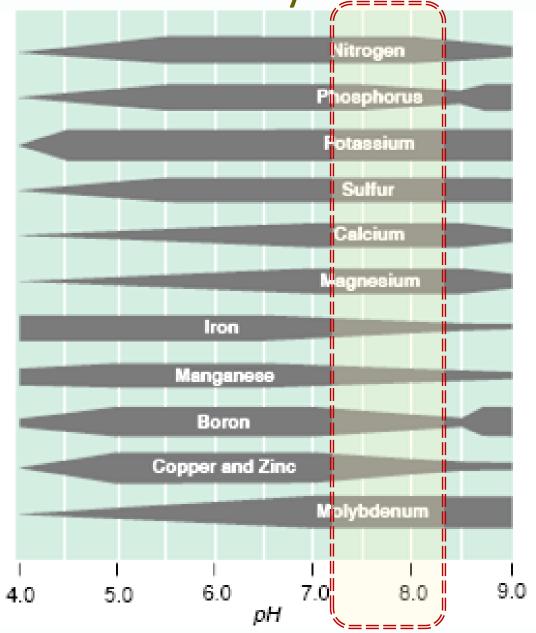
% of soil zinc levels below 'critical level' over last 15 years in Montana



MT soils with low micronutrient concentrations (source: Agvise)

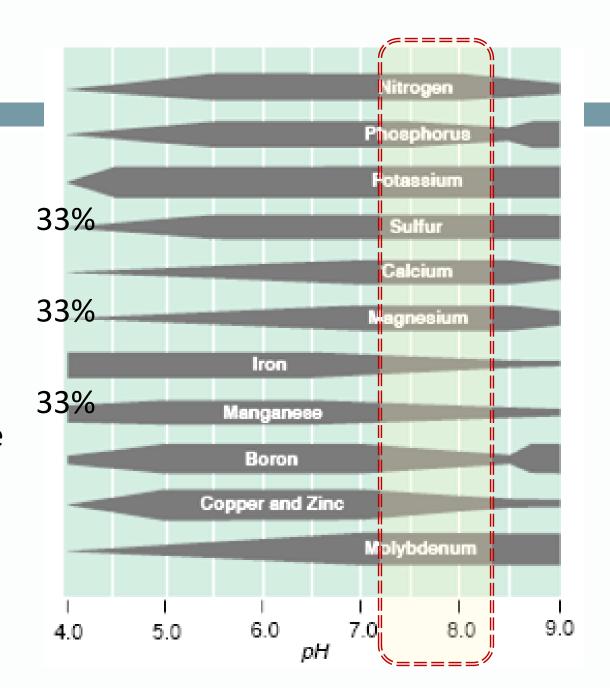
There may be bias because more samples may be submitted when deficiency symptoms are suspected than when not

Small grains with low and deficient tissue micronutrient concentrations in MT (source: Agvise)

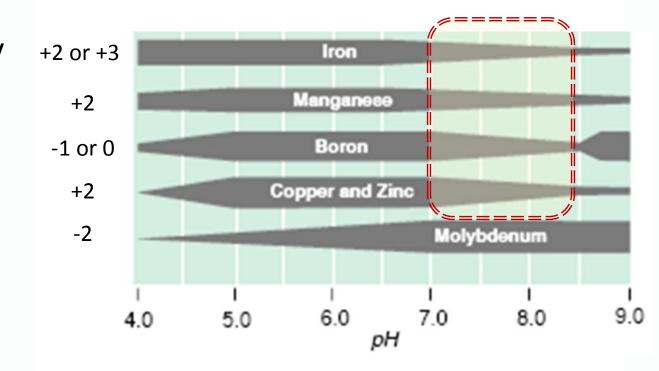


There may be error b/c many samples are not the correct plant part and there may be bias because more samples with deficiency symptoms are submitted than w/o symptoms

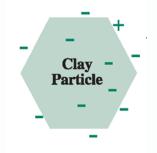
Conditions that affect availability to plant


Nutrient	Limiting conditions
Boron Chloride	Low CI in rain (MT) Very wet or very dry Coarse, sandy <2% SOM (B) pH >7.5 (B)
Copper Iron Manganese Zinc	Cool and wet <2% SOM Poorly drained (Fe) Coarse and dry (Cu) pH >7.5

pH affects soil nutrient availability

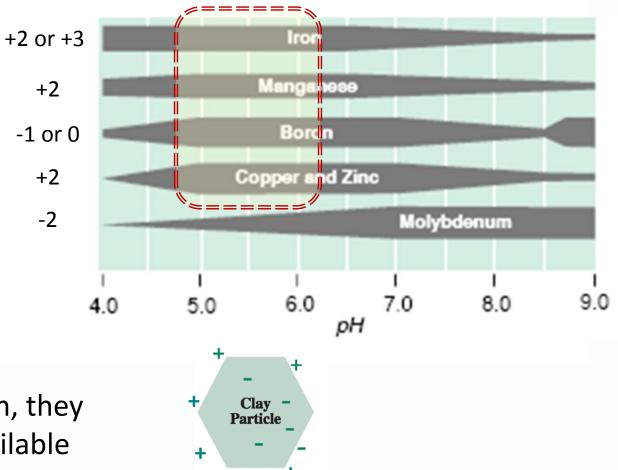

Most Montana soils are:

- A. Generally alkaline (pH > 7.0)
 - B. Generally acidic (pH < 7.0)
 - C. "Gumbo" = too difficult to sample



pH affects soil nutrient availability

These are relatively small ions when in soluble form – strong charge density (small balloon sticks to wall easier)



How tightly are they bound to soil in high pH? So strong they are not very plant available.

pH affects soil nutrient availability

What happens when they are in a lower pH?

The bonds weaken, they become more available

Chloride is not affected by pH

Mobility and processes that affect availability

Nutrient	Mobility	Limiting processes
Boron Chloride	Mobile Soluble	Leaching Harvest
Copper Iron Manganese Zinc	Immobile Insoluble	Harvest Binding to soil or forming minerals

Why is mobility important?

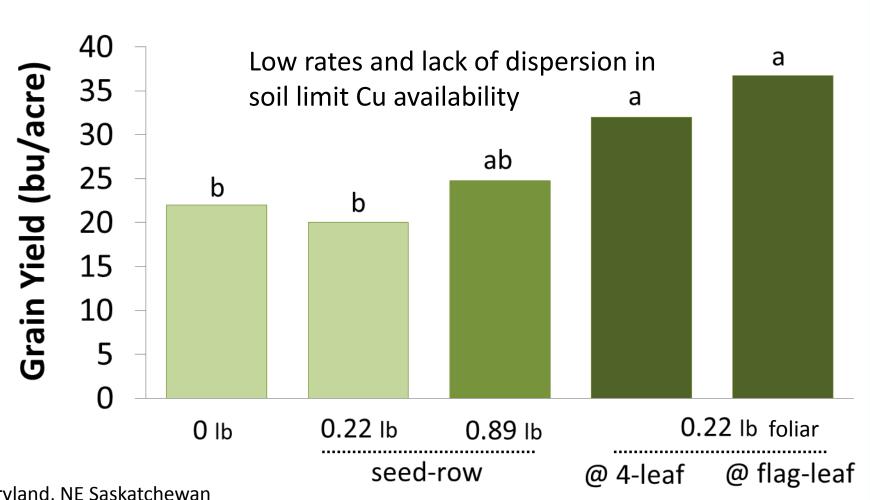
Affects fertilizer placement

Where are the immobile micros (Cu, Fe, Mn, and Zn) best placed? Select all that apply.

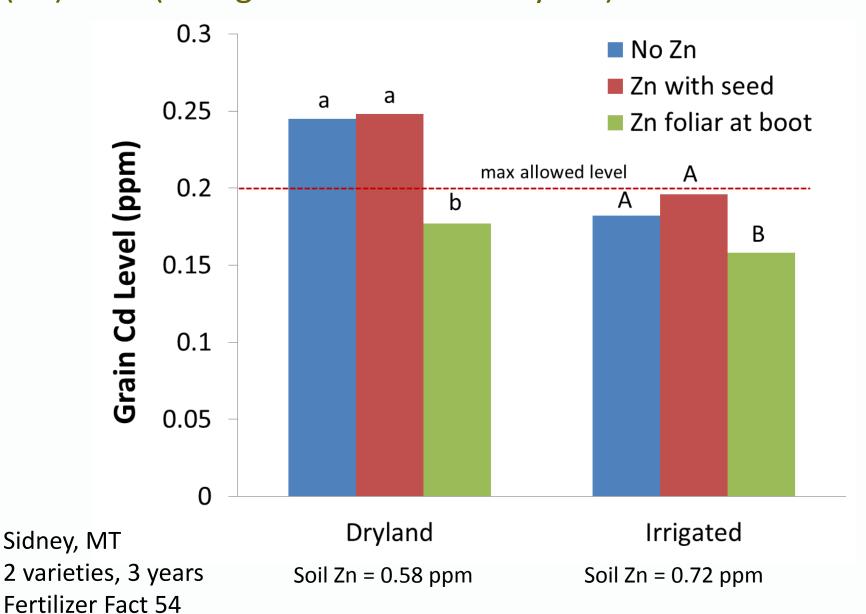
(A.) Foliar 259

B. In a gel cap 25%

C. In the root zone 25%


D. Soil surface 25%broadcast

Questions?


Copper Rate, Method and Timing Effects SW Grain Yield

Dryland, NE Saskatchewan Sandy loam, Annual application Soil Cu 0.4 ppm Malhi et al. 2005

Cu rate/method/timing

Foliar Zn at boot decreases durum wheat grain cadmium (Cd) level (though did not increase yield)

Cl affects leaf spot severity, yield and shoot Cl concentration in durum wheat

Fertilizer Cl (lb/ac)	Flag Leaf Spot Severity (%)	Yield (lb/ac)	Shoot Cl (ppm)
0	87	2954	540
40	6	3615	5520

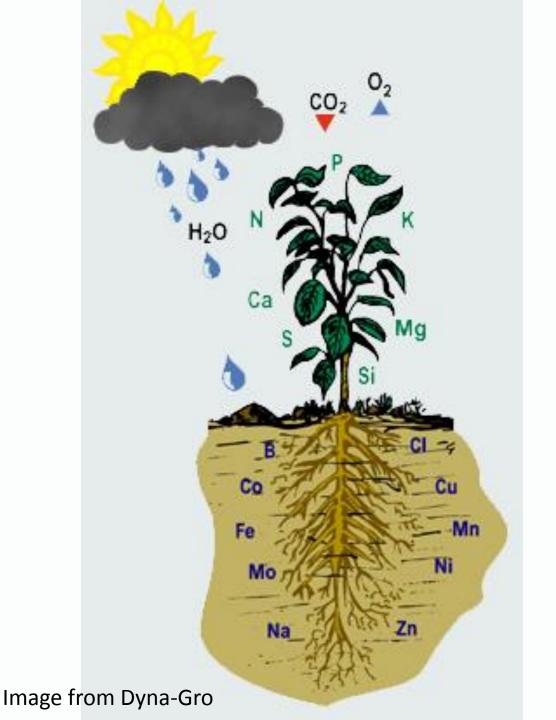
All differences are significant with 95% confidence. Initial soil Cl was 0.6 to 0.7 ppm in upper 3 ft.

Questions?

Summary

- Micronutrients are used in tiny amounts but are critical
- Low or deficient levels of boron, copper, molybdenum, iron, manganese, and nickel in Montana are rare based on tissue testing.
- Low or deficient levels of chloride and zinc appear to be more common.
- A combination of deficiency symptoms, soil testing, and tissue testing may be best approach at identifying deficiencies

For more information


Additional soil fertility information is available at

http://landresources.montana.edu/soilfertility

- For plant nutrient functions and deficiency symptoms, see Nutrient Management Module 9.
- For more information on micronutrients, see
 NMM 7
- For fertilizer placement, look at NMM 11.

http://landresources.montana.edu/nm

Questions?

