Strategies to Stretch your Phosphorus Fertilizer Dollar

Prepared for Judith Basin County – February 4, 2009

by Clain Jones, Extension Soil Fertility Specialist

clainj@montana.edu; 406 994-6076

and Perry Miller, Rick Engel, Terry Rick

DIFFERENCE IN MONTANA

AGRICULTURE

What do you grow?

Forages?
Small Grains?
Others?

- Show phosphorus cycle and relevance
 Discuss:
 - Rates
 - Source: Liquid vs Granular vs "Avail"
 - Placement
 - Timing
 - Previous Crop Effects

Soluble P concentrations in soil are generally very low (0.01 – 0.1 parts per million) due to:

- Precipitation of poorly soluble calcium phosphate minerals. This is very relevant in this region's high pH, calcareous soils.
- 2. Strong sorption to manganese, aluminum, and iron oxides and hydroxides (example: rust). This process increases at low pH so is only an issue in small areas of Montana.

At what pH levels would you likely need to fertilize with more P?

If you want more information on P cycling, go to MSU Extension's publication at:

http://www.montana.edu/wwwpb/pubs/mt44494.pdf

Determining P Application Rate (from EB 161)

- Sufficiency Approach Do you want to apply minimum necessary to maximize yield in most years? *If so*, use Table 18 (P).
- Maintenance Approach Do you want to replace the nutrients removed at harvest? *If so*, use Table 21.
- Build Approach Do you want to build your soil P, to minimize yield losses and save on fertilizer in future years? *If so*, add amounts from 1 and 2.

What might your answer depend upon?

Rate

From Fertilizer Guidelines for Montana Crops (EB 161)

Сгор	Olsen P Soil Test Level (ppm)				
	0	4	8	12	16*
	P Fertilizer Rate (lbs P ₂ O ₅ /a)				
Wheat-Spring	50	45	35	30	20
Wheat-Winter	55	50	45	40	35

Multi-year Summary of Alfalfa Response to Applied P Broadcast Trial, Geyser, Montana

P Source options

Monoammonium P (MAP)

Diammonium P (DAP)

Liquids (generally more expensive than MAP and DAP)

Generally no yield differences between sources. Exception: Liquids can produce higher yields on highly calcareous soils (> 20% CaCO₃)

Avail by Specialty Fertilizer Products: An "Enhanced Efficiency Fertilizer" Limited work done on Avail for cereals in the western U.S. (none on SFP's website)

Placement: Banding vs Broadcast

Banding P is much more effective than banding N, because P is much more immobile in the soil.

Figure 7. The advantages of P banding are greatest when STP levels are very low (VL) to low (L). From Randall and Hoeft (1988).

Effect of P banding depth on winter wheat grain yield

Effect of P banding depth on small grains

Vertical Olsen P Distribution at Moccasin

How do localized concentrations of nutrients affect root distribution?

CJ35 Try adding some questions to the slides to make more interactive. Meaning a follow up question here is Why does this matter? Clain Jones, 10/26/2007

QUESTIONS?

Timing

- Ideally we would apply P directly to the root zone right before peak P uptake
- Not practical, so best to apply P at time of seeding (with or below seed)
- On pastures, P responses are better with Fall application. Why?
- Value of Foliar P?

Effect of Foliar P on Winter Wheat Grain Yield

Questions so far?

Does crop rotation and/or previous crop affect P availability?

Bozeman Crop Diversification Rotation Study (CDRS)

- Study initiated at Agronomy Post Farm in 2000 (6 miles west of Bozeman)
- 17 treatments with 4 year rotations (4 reps)
- I organic (ORG) rotation (no inputs). N fertility: one winter pea green manure and one lentil rotation (harvested for grain)
- I pesticide free production (PFP) rotation
- 8 fertilized no-till/fertilized rotations including winter wheat based (NTW) and diverse (NTD) with both low (L) and high (H) N rates.

CDRS: Olsen P Comparison – Top 6 inches (March 2007)

Crop species that can help dissolve phosphorus minerals

Buckwheat Legumes Some Mustards

Question: Can green manures help dissolve rock phosphate fertilizer to increase organic winter wheat grain yields in Montana?

Methods

Location: Organic small grain farm, Big Sandy, MT

History: Managed organically with intermittent legume green manures for 21 years. No inputs.

□ Upper 6 inch soil pH: 6.6

□ Upper 6 inch Olsen P: 16.1 ppm

Methods

First Year (2006) Crop Treatments:

Buckwheat (*Mancan*) Yellow Mustard (*AC Base*) Spring pea (*Arvika*) Fallow

April 2006 Broadcast-Incorporated RP (0-2.1-0) Treatments: 0, 7, 17 lb available P₂O₅/ac

Second Year Crop: Winter wheat (*Tiber*)

Big Sandy Green Manure Study

Effect of green manure crop and rock phosphate on subsequent winter wheat grain yield, Big Sandy: 2007

Summary

- Optimizing P use is important especially in times of high P fertilizer costs.
- Rates will vary depending on your goal (sufficiency, maintenance, or build)
- Banding is more efficient than broadcast P
- P is most effective when applied at time of seeding
- Foliar P may slightly increase yield, but likely not worth it.
- Although some crops can dissolve P minerals, the effect doesn't appear to transfer to the next crop.

For more Information:

Soil Fertility Website: http://landresources.montana.edu/soilfertility

Questions?