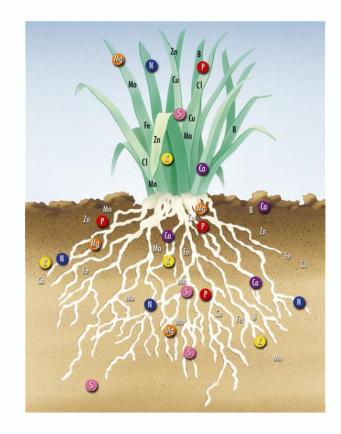
PASTURE AND HAY FIELDS: SOIL FUNDAMENTALS

Sanders County April 8, 2015

Clain Jones

clainj@montana.edu 994-6076

College of AGRICULTURE MONTANA AGRICULTURAL EXPERIMENT STATION


EXTENSION

- Present soil properties and how they interact with plant nutrients
- Illustrate the soil nutrient cycles of N, P, K, S and some micronutrients
- Understand plant available forms of nutrients and their relation to nutrient cycles
- Learn to plan and implement soil sampling
- Unravel the mysteries of soil test reports

An essential nutrient:

- Is required by plants to complete life cycle (seed to new seed)
- Cannot be replaced by another element
- Is directly involved in plant's growth and reproduction
- Is needed by MOST plants

There are 14 mineral nutrients that have been found to be essential for growth of most plants:

Macronutrients	Micronutrients					
Nitrogen (N)	Boron (B)					
Phosphorus (P)	Chloride (Cl)					
Potassium (K)	Copper (Cu)					
Sulfur (S)	Iron (Fe)					
Calcium (Ca)	Manganese (Mn)					
Magnesium (Mg)	Molybdenum (Mo)					
	Nickel (Ni)					

The macronutrients are simply needed in larger amounts by the plant than the micronutrients.

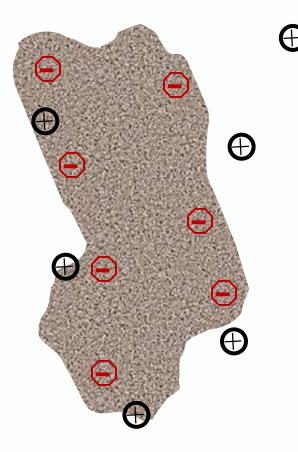

Nutrient deficiencies of the bolded nutrients have been observed in Montana

Plant nutrient uptake

- For plants to take up nutrients they need to be:
 - in the right form (soluble or weakly bound)
 - in soil solution

Some soil properties that influence nutrient availability

- Texture/surface area
- CEC (cation exchange capacity) and AEC (anion exchange capacity)
- pH
- SOM (soil organic matter)


CEC and AEC

- Cation Exchange Capacity (CEC) Total negative charge on a soil
- A measure of the soil's ability to hold onto and supply positive ions (e.g. NH₄⁺) to a crop.
- Anion Exchange Capacity (AEC) Total positive charge to hold onto nutrient anions such as SO₄⁻²
- Generally weak bonds that release as concentration of nutrient in solution drops
- AEC is generally smaller than CEC.

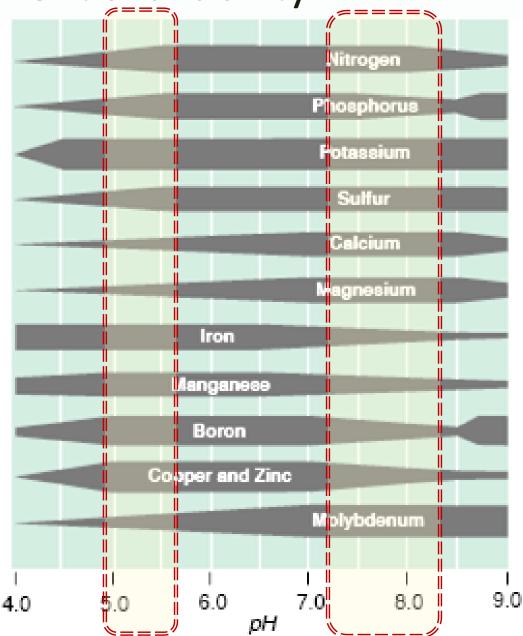
Are soils better able to hold $ont\phi + \partial r - charged nutrients?$

Cation Exchange Capacity

- Many essential plant nutrients carry positive charges. Example: Potassium (K⁺) and Zinc (Zn⁺²)
- A fertile soil has the capacity to attract and hold these nutrients.
- Soils with large surface areas, such as clay and O.M., have more CEC and surface area and therefore are generally more fertile.

CEC ranges for different soil types

Soil texture	CEC range (meq/100 g soil)
Sand	2-4
Sandy loam	2-17
Loam	8-16
Silt loam	9-26
Clay	5-58
From Brady 1984	


A CEC >15 meq/100 g soil has high capacity to hold cations such as K^+ , NH_4^+

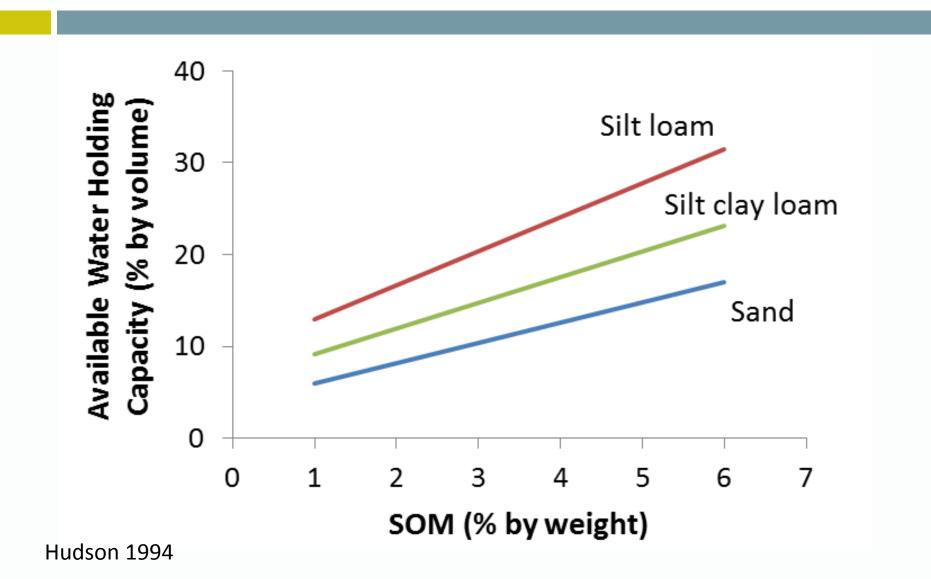
- Generally low to neutral in western MT soils. If lower than 6 and growing alfalfa, then consider liming
- Can decrease pH with elemental sulfur, but likely not economical
- Fertilizing with ammonia-based fertilizer can lower pH over time
- Crops have different optimum pH ranges, e.g. alfalfa 6.2-7.5, barley 5.5-7.0, sugarbeet 6.5-8.0

pH affects soil nutrient availability

Low pH, acidic soils – may limit N, Ca, Mg, Mo because they don't stick tight and can leach away (Fe) or form minerals (P)

High pH, alkaline calcareous soils – may limit P, Fe, Mn, B, Cu, Zn because they stick tight to the soil, plant can't get them

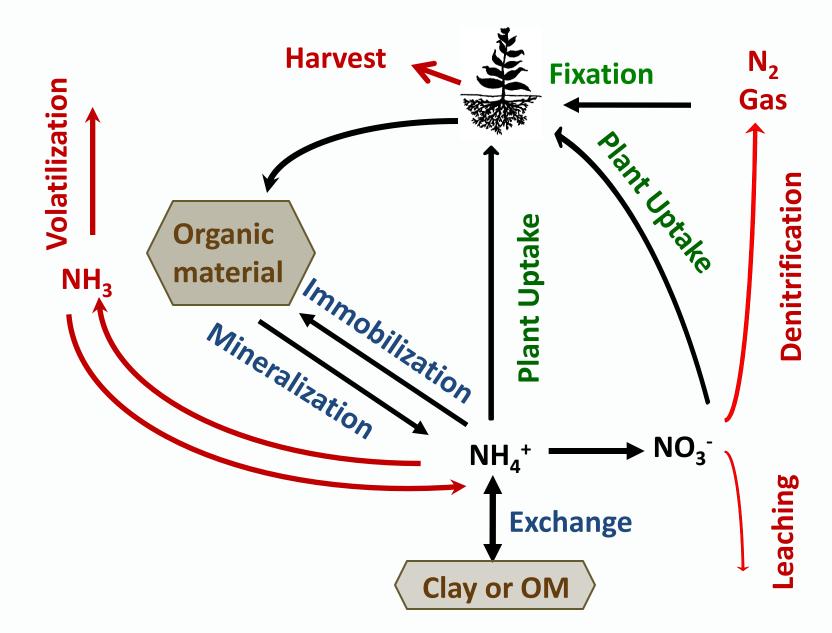
SOM = Soil organic matter


- Is <6% of soil by weight but controls >90% of the function
- High surface area and CEC (215 meq/100 g vs. 58 for clay)
- What does SOM do for soil?
- Increase CEC
- Can't change CEC of mineral soil or soil pH very well, but can increase SOM to influence soil CEC

What else does SOM do for soil?

- As decomposes it releases nutrients bound in OM structure
- Holds water which helps nutrients move from soil to plant roots

SOM increases available water holding capacity



Questions?

Nutrient cycling

Some knowledge helps understand the whys of source, rate, timing and placement. Even my research associate still refers to nutrient cycling diagrams for clarity ⁽³⁾


Most common lacking nutrient is nitrogen (N)

Mineralization

Decomposition of SOM by microbes, releasing available N

Plant-= Available N

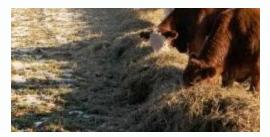
Organic-N

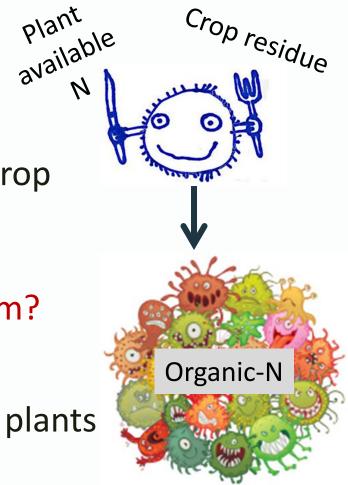
How does high SOM affect recommended fertilizer N rate assuming yield goal is same?

- 1. Increases N rate
- Depends on whether the field has legumes or not
 Decreases N rate

SOM supplies N

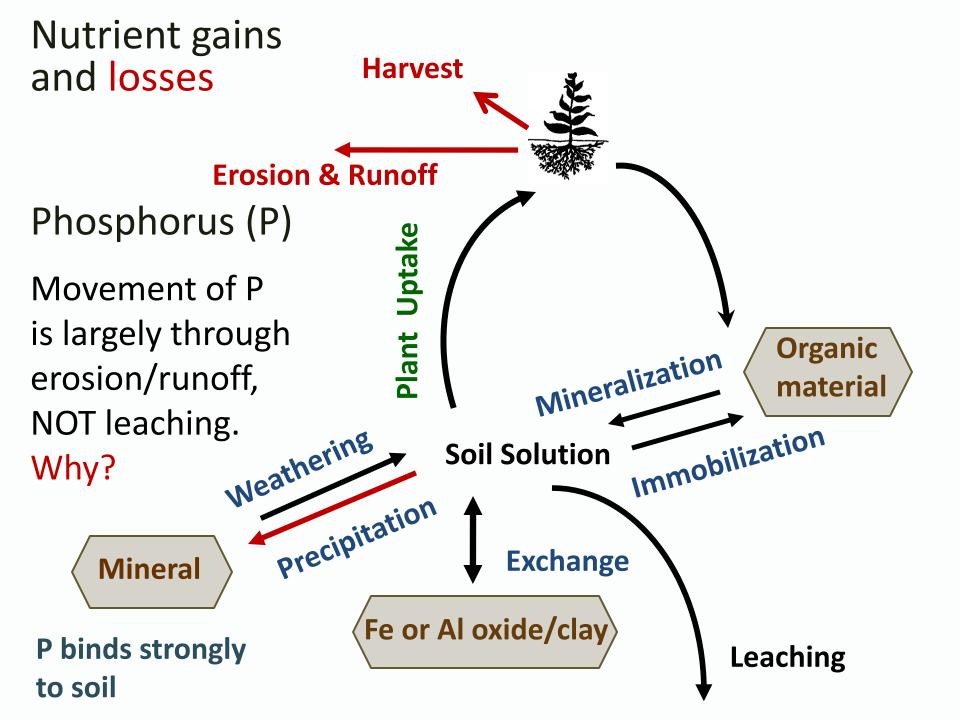
Immobilization

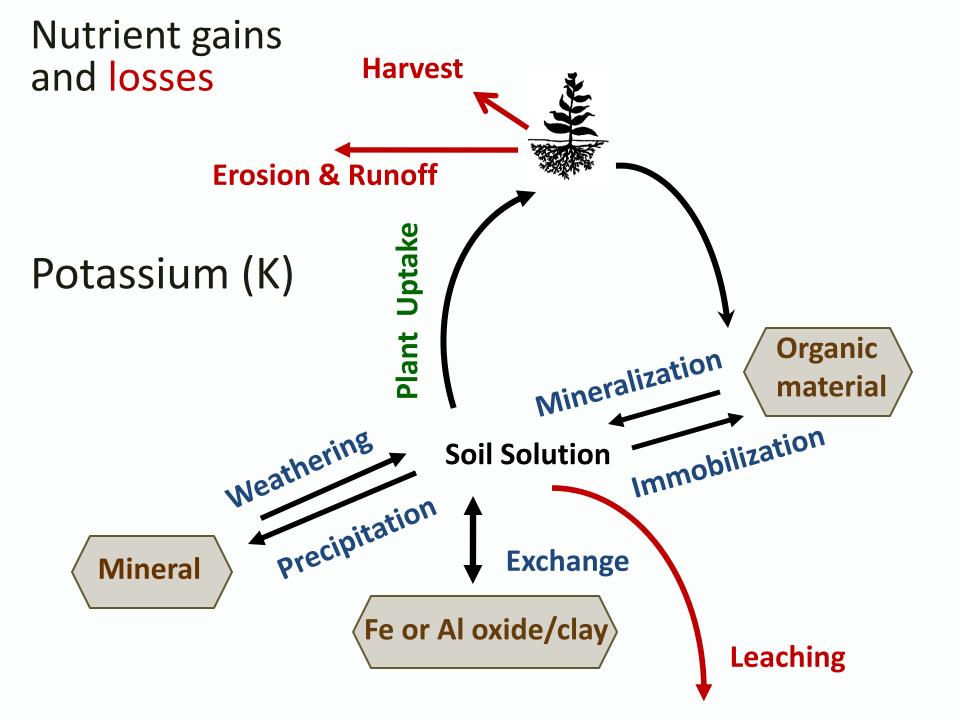

Uptake of available N by microbes

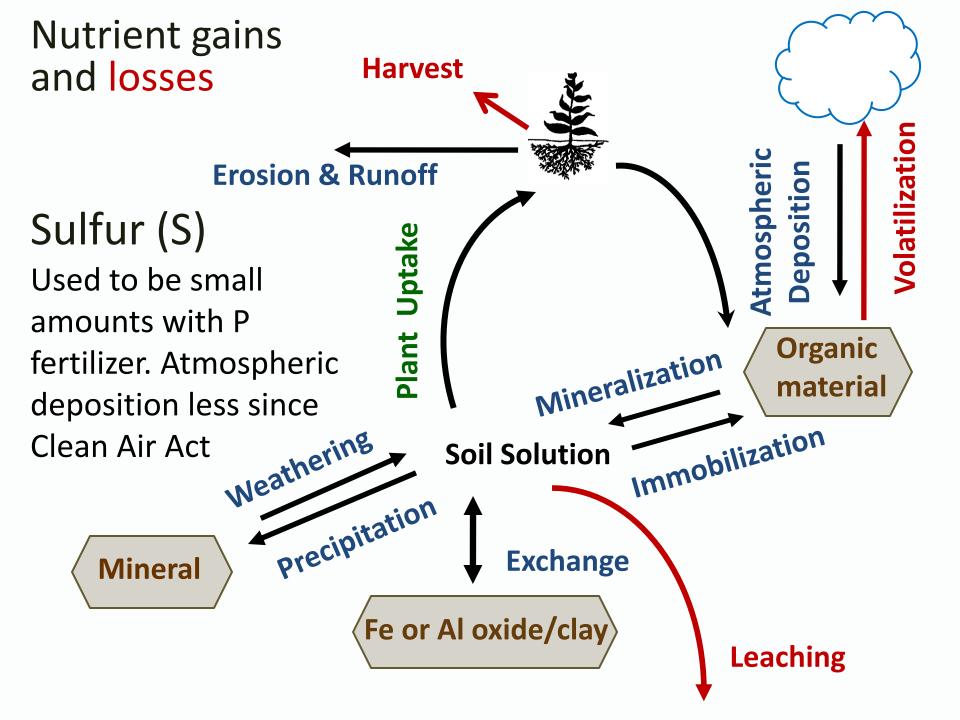

Why need to know about it?

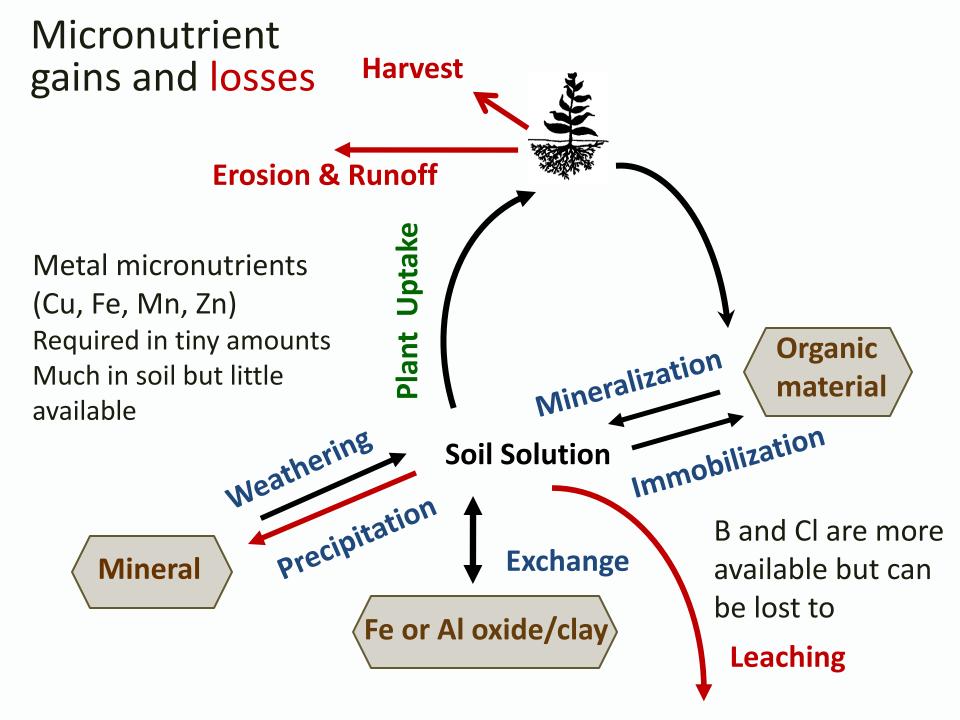
- Crop residue is microbes' energy Microbes use plant available N
- We need to provide more N for crop

Is immobilized N lost from the system? Yes/No?


No – just temporarily unavailable to plants






Questions on N cycle?

References for more information are provided at end of this ppt.

Summary

- Nutrients need to be in the right form to be plant available
- Nutrients cycle among different forms in the soil
- Soil characteristics influence nutrient availability
- Many soil properties cannot readily be changed by management
- Soil organic matter is one that can be changed and has large impact on soil nutrient availability

Questions?

Advantages of soil testing (even if only occasionally)

- To identify nutrient deficiency or imbalance
- To help calculate optimal fertilizer rates
- Especially important in case where soil nutrient availability has been depleted or is in excess
- Can increase yield and/or save on fertilizer costs, and decrease environmental risks

Why are more samples better when it comes to soil sampling?

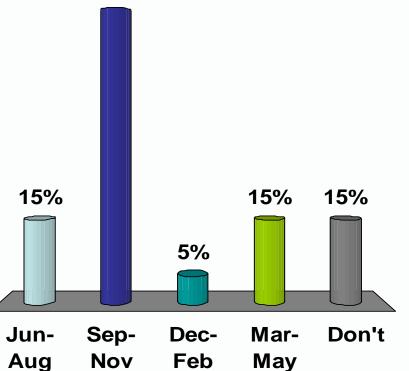
Variability can be large!

Range and average of test values from 40 individual soil cores from a 80-acre field^{1.}.

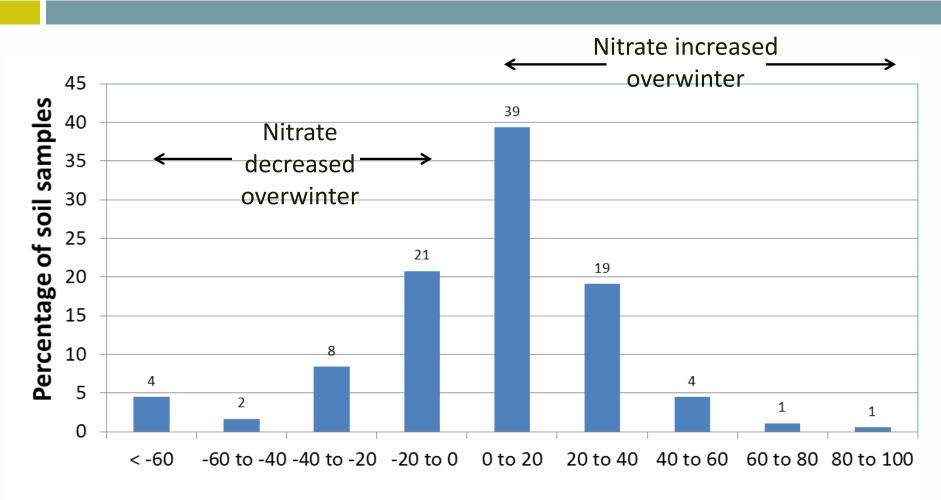
Analysis	Range (Ib/acre)	Average (lb/acre)								
Nitrate-N	12-225	53								
Phosphorus	5-250	39								
Potassium	156-1164	557								
¹ From Swenson et al. (1984)										

Use 10 cores to composite into each sample submitted

Why is N tested to 2 feet and P and K to only 6 inches?


- N can easily move to 2 feet (and beyond) and the lower depths often have substantial amounts of N.
- P and K fertilizer generally stay in upper ½ foot and amounts are often very low below there.

Timing of soil sampling


- Nitrogen fertilizer guidelines are based on spring soil samples for nitrate in Montana
- BUT, most sampling in MT occurs from late summer 51%

Based on 35 'clicker' responses at MABA 2010 Convention, when asked when crop advisers do most of their soil sampling:

Why is this a potential problem?

November to April nitrate changes, Montana data based on 180 samples (Jones et al. 2011)

April - Previous November Nitrate Change (lb N/ac)

Soil sampling timing summary

- Changes in nitrate levels from late summer/fall to spring can be large and highly variable
- High nitrate levels on shallow coarse soils can be lost overwinter, resulting in under-fertilization
- Nitrate levels can increase overwinter (from 'mineralization'), resulting in over-fertilization
- Sampling later will better represent growing season nitrate levels

Soil health tests

- Measure and monitor over time or between fields
- Useful to assess effect of management or evaluate problem areas
- Standardized methods may not yet be in place
- Currently no calibration between test values and fertilizer recommendations for northern Great Plains
- See NRCS for info on soil health

http://www.nrcs.usda.gov/wps/portal/nrcs/main/national/soils/health/

Soil testing summary

- Soil tests can increase yield and/or save on fertilizer costs, and decrease environmental risks
- Soil tests for N are best done in the spring, can be done in fall for P and K, and not worthwhile for S
- Soil *health* tests are useful to assess management or problem areas, but currently no calibration between tests and fertilizer recommendations

Soil test interpretation

What are the first things to look for on a soil test report?

Factors affecting crop production

Factor	Value	Impact/consider						
Soil organic matter	≤ 1 (%)	Minimize fallow, add a perennial, increase N						
	> 3 (%)	N credit (~15 lb N/ac)						
Soil pH	< 6	Poor legume nodulation						
	> 8.3	Sodic soil, nutrients tied up						
Soluble salts (EC)	> 4 (mmhos/cm)	Too saline, water stress, nutrient imbalance						

Example soil test report from Trout Creek, MT

П	REPORT OF	ANALYSIS			FF	RTII IZEI	R GUIDLINES IN: Lbs/Acre								
	YOUR SAMPLE 1st Option Intended Crop							Option Inte			3rd Option Intended Crop				
	HAVE			Grass	Hay										
0	Soil pH	6.0		Yield G	Yield Goal			Yield G	oal			Yield Goal			
	Buffer Index	6.6													
	Excess Carbonate	VL		Preceding	g Crop			Preceding	Crop		Preceding Crop				
	Soluble Salts mmhos/cm	0.2													
	Sodium ppm	23.0		LANT FOOD		P REMOVAL RATES		INT FOOD		REMOVAL ATES		ANT FOOD LINE RANGES	CROP REMOVAL RATES		
	% Organic	3.7	N	135.	0	175	N				N				
Ŋ	Matter	AUTOMON	P2O5	75.0)	66	P2O5				P ₂ O ₅				
	ELEMENTS IS		K₂O	230.	0	140	K₂O				қо				
	PER MILLIC		MgO	5.0			MgO				MgO				
	Nitrate N	1.0	S	6.5	i		S				S				
	Phosphorus Bray 1	Phosphorus Bray 1 10		0.0			Zn				Zn				
	Olsen – Potassium 88 Magnesium 220 Calcium 1035		Zn Mn		_		Mn				Mn				
			Cu				Cu				Cu				
							Fe				Fe				
			Fe												
	Sulfate Sulfur	8	В				В				В				
	Zinc	Lime	438	0		Lime				Lime					
	Manganese	-			Lin	ne Guidelines	are for 100% Effect	lve Calcium Car	rbonate (ECC) wi	ith a 6" Incor	poration Depth.				
	Copper	-													
	Iron	-					ICENT OF TO					ESTIMATED			
	Boron	-	Actual % Hydrogen	Suggested Hydrogen	Actual % Potassium	Suggeste Potassiun		Suggested Magnesium	Actual % Caldum	Suggeste Caldum		Suggested Sodium	CEC for Your Soll		
	Bulk Density	1.1	40.5	0 - 5	1.8	4.1 - 7	14.9	15 - 20	42.0	65 - 75	5 0.8	0 - 5	12.3		

Example soil test report from Trout Creek, MT

	REPORT OF	ANALYSIS					FERTILIZE	ER (SIN Lt	s/Acre						
		YOUR SAMPLE NUMBER			1st Option Intended Crop				R GUIDLINES IN: Lbs/Acre 2nd Option Intended Crop					3rd Option Intended Crop			
1	HAY FIELD			Grass_Hay													
	Soil pH	6.0	1 [Yield G	Yield Goal				Yield G	oal		Γ	l .			
	Buffer Index	6.6	11										Γ				
	Excess Carbonate	VL	11	Preceding Cro			rop		Preceding Crop					Preceding Crop			
	Soluble Salts mmhos/cm	0.2	1 [ANT FOOD CROP REMOVAL					CROP REMOVAL		
	Sodium ppm	23.0	11		INF PLAGES		RATES			NT FOOD NE RANGES					ANT FOOD LINE RANGES	RATES	
	% Organic	3.7		N	135.	0	175		N					N			
	Matter ANALYSIS OF	NUTRENT	ΤI	P2O5	75.0	0	66		P ₂ O ₅					P ₂ O ₅			
	ELEMENTS IS	ELEMENTS IS IN PARTS		K₂O	230.	0	140		К ₂ О				Γ	қо			
	PER MILLIC		11	MgO	5.0				MgO					MgO			
	Nitrate N	1.0		S	6.5				S								
	Phosphorus Bray 1	10		Zn	P.0				Nutrients are discussed								
1	Olsen	-	11	Mp					Mn •								
Ŋ	Potassium	88	Η	Cu					Cu	n nex	it pre	esen	ta	ation			
	Magnesium	220		Fe					Fe					Fe			
	Calcium	1035		В		-			в					в			
	Sulfate Sulfur	8											ŀ	-			
	Zinc	3.0	11	Lime	438	0			Lime					Lime			
	Manganese	-					Lime Guideline	is are	for 100% Effect	lve Calcium Ca	bonate (ECC)	with a 6" inco	rpor	ation Depth.			
	Copper	-															
	Iron	-	ACTUAL AND SUGGESTED PERCENT OF TOTAL CEC (BASE SATURATION) ESTIMATED														
	Boron	-	1	Actual % Hydrogen	Suggested Hydrogen	Actual 9 Potassiu			Actual % Magnesium	Suggested Magnesium	Actual % Calcium	Suggest Caldur		Actual % Sodium	Suggested Sodium	CEC for Your Soll	
	Bulk Density	1.1] [40.5	0 - 5	1.8	4.1 -	7	14.9	15 - 20	42.0	65 - 7	5	0.8	0 - 5	12.3	

Questions?

For more information: see Extension publications at http://landresources.montana.edu/soilfertility/

Soil Sampling Strategies (MT200803AG) Interpretation of Soil Test Reports for Agriculture (MT200702AG)

Nutrient Management Modules: http://landresources.montana.edu/nm/

- NM2 Plant nutrition & soil fertility
- NM3 Nitrogen
- NM4 Phosphorus
- NM5 Potassium

- NM6 Sulfur (and Ca, Mg)
- NM7 Micronutrients
- NM8 Soil pH and SOM

Soil & Water Management Modules: http://landresources.montana.edu/SWM/

SWM1 Basic soil properties