Tonight's host and co-host

Clain Jones MSU Extension Soil Fertility Specialist <u>Clainj@montana.edu</u> 994-6076

Emily Standley Fergus/Petroleum County Ext. Agent <u>Emily.standley1@montana.edu</u>

EXTENSION

College of Agriculture & Montana Agricultural Experiment Station

Soil Fertility for Forages

Winter Soil Fertility Series: Week 5

Feb 3, 2021

Clain Jones, Extension Soil Fertility Specialist 406-994-6076, clainj@montana.edu

AGRICULTURE & MONTANA AGRICULTURAL EXPERIMENT STATION

EXTENSION

Photo by K. Olson-Rutz

Welcome MSU's new Extension Forage Specialist

Hayes Goosey MSU Extension Forage Specialist hgoosey@montana.edu 994-5688

College of AGRICULTURE & MONTANA AGRICULTURAL EXPERIMENT STATION

Why learn about soils?

- For good forage yields, and cover for livestock and wildlife
- For efficient use of resources (water, fertilizer, \$)
- For conservation

Goals

- Show nutrient deficiency symptoms of nitrogen, phosphorus (P), potassium (K) and sulfur
- Review use of Fertilizer Guidelines to determine fertilizer rates
- Present timing, source and placement considerations
- Illustrate yield and quality responses of hay to P, K, and S
- Help your bottom line

Some questions for you. I will copy and paste these into Chat, and then you can respond with Y for Yes or N for No

Who has raised alfalfa-hay or grass hay? Who has pasture? Who has grown annual forages (ex: Haybet

barley, Willow Creek winter wheat)?

To get the most out of your fertilizer investment

The 4 Rs:

- Right rate
- Right source (including legumes)
- Right timing
- Right Placement
- (Right Rotation)

Focus of N or P and K depends on % legume in stand

Yield increases and net returns with N greatest if < 36% alfalfa in stand and soil N < 5 lb N/acre (Malhi et al. 2004)

Fertilizing with nutrients other than N favors legumes over grass (w/in 3 yrs)

Wisconsin, Schneider 2009

On to Nitrogen (N)

N Deficiency Symptoms

- Pale green to yellow lower (older) leaves.
 Why lower leaves? N is 'mobile' in plant
- 2. Stunted, slow growth
- 3. Few tillers in small grains
- In Nutrient Management Module 9 <u>https://landresources.montana.edu/nm/</u>

Corn

> Online

https://landresources.montana.edu/soilfertility/nutrientdeficiencies.html

Diminishing return of increasing N

Applies to all crops, example on irrigated western wheatgrass, Blaine Co.

Example N calculation: Forage

- Know your yield goal. Use 5 ton of 20/80 legume/grass mix, and 4 lb N/ac soil test value for this example
- Compare soil test to MT guidelines

		How m			
	80/20	60/40	40/60	20/80	fertiliz
Yield (ton/ac)	Av	Fertiliz			
1	5	10	15	20	
2	10	20	30	40	Availa – soil t 100 – 4
3	15	30	45	60	
4	20	40	60	80	
5	25	50	75	100	
6	30	60	90	120	

nuch er N?

zer N =ble N needed test N

 $4 = 96 \, \text{lb N/ac}$

Total available N (soil + fertilizer) needed for dryland winter wheat forage at 2 MT sites

Averaged over 4 N rates, broadcast and banded, 3 years

Lenssen et al. 2020, Froid and Sidney MT

Optimal timing depends on source

Readily available N (urea, UAN): shortly after GRASS green-up

Willamette Valley, Oregon, Hart et al. 1989

Urea placement affects Hays barley forage yield

Angvick et al. unpub data, Froid, MT

Split app may increase total yield, improves distribution over season

Early spring alone, or split btwn. early spring and after 1st, or 1st and 2nd cutting

Adding N – having alfalfa in mix may be best source of N

On to Sulfur (S), Phosphorus (P) and Potassium (K)

Balanced N and S fertilization increases yield in mixed dryland brome hay

Started in 1980, annual spring surface broadcast 100 lb N/ac as ammonium nitrate and 9.8 lb S/ac as sulfate

Malhi et al., 2011, SK

Sulfur

- Eroded or coarse-textured soils are more susceptible to sulfur deficiency, particularly after high rainfall
- Alfalfa is S deficient at tissue concentrations <0.25% (leaves from top 1/3 of plant at budding). For other forages contact testing lab or see our Extension documents
- S > 0.30% can cause livestock health problem
- Deficiencies increasing. S fertilizer increased alfalfa yield ~3 fold in Moccasin area (Wichman, unpub data)

Sulfur visual symptoms are better than soil tests

- Standard sulfate soil test too unreliable
- Visual symptoms
 - yellow or light green upper leaves
 - Small thin stems
 - Delayed maturity
 - No characteristic spots or stripes
- Last year production performance

Images from IPNI

S influence on forage quality

- N conversion to protein requires S
- Increased S can lead to increased protein (FertFact #27) and digestibility, and reduced nitrate concentration (Westcott unpub data)

Provide S before mid-vegetative stage in alfalfa

Plant Growth

Union, Oregon Pumphrey and Moore 1965

Phophorus (P)

Why important to grass/alfalfa stands?

- Helps with N fixation in nodules
- > Favors alfalfa over grass
- P improves alfalfa regrowth and recovery after cutting (IPNI)

P Deficiency Symptoms

- 1. Dark green, often purple
- 2. Lower leaves sometimes yellow
- 3. Upward tilting of leaves may occur in alfalfa
- 4. Often seen on ridges of fields

Barley, image by IPNI

Low P

Adequate P

P guidelines for alfalfa and grass based on soil analysis In Forages: P, K, S, & micros Soil Scoop and MSU EB0217

	Olsen P Soil Test Level (ppm)						
Сгор	0	4	8	12	16		
	P Fertilizer Rate (lb P ₂ O ₅ /acre)						
Alfalfa	140	110	75	40	20		
Alfalfa/grass (50/50)	93	73	53	30	13		
Grass	45	35	30	20	5		
If soil test is above 16 ppm then consider using removal rate							
$(10 \text{ to } 11 \text{ lb } P_2 O_2 / \text{ton})$							

Potassium (K)

Benefits

- Improved alfalfa stand persistence, shoots per plant
- Reduces leaf drop of alfalfa
- Improved resistance to plant diseases
- Increased rhizobia activity = greater N fixation

Useful on many soils, even some having high K values (especially in cool spring soils)

How might lack of K affect an alfalfa-hay field?

K deficiency symptoms

- Alfalfa white spots on leaf edges
- Grasses and corn chlorosis and necrosis on *lower* leaves first. WHY?
 - K is mobile in plant
- Weakening of straw-lodging in small grains, breakage in corn.

Wheat image by IPNI

 Wilting, stunted, shortened internodes. K guidelines for alfalfa and grass based on soil analysis In Forages: P, K, S, & micros Soil Scoop and MSU EB0217

	K Soil Test Level (ppm)						
Crop	0	50	100	150	200	250	
	K Fertilizer Rate (lb K ₂ O/acre)						
Alfalfa	240	205	170	140	95	30	
Alfalfa/grass (50/50)	160	137	115	93	63	23	
Grass	80	70	60	45	30	15	

If soil test is above 250 ppm then consider using removal rate 38 lb K_2O /ton grass, 53 lb/ton alfalfa

To avoid toxic luxury consumption by first cutting, apply ½ the rate after first cutting and rest after last cutting for following year

On to forage response to fertilization

Fertilizing with P and K

- P and K can be 'banked' for several years
 - A single 100-400 lb P₂O₅/ac on alfalfa = similar yield, protein, profit as same amount divided over 5 annual applications (Malhi et al. 2001).
 - 1 x 120 lb P₂O₅/ac = 3 x 40 lb P₂O₅/ac/yr avg bromegrass yield (Malhi et al. 1992, AB)
- Build up soil P and K levels prior to new seeding for several years worth
- Additional P and K seed placed can increase seedling establishment
 - < 10-15 lb (N + K_2O)/acre to reduce risk to seedlings
 - < 25 lb 11-52-0/acre with seed</p>
- Too much K can lead to luxury consumption by crop and risk of milk fever

Single P application increased alfalfa-grass yield for 4 years (N, K, and S had minimal effect) in central MT

FF27 and Wichman unpubl. data

Response greater when soil level low

Irrigated alfalfa, broadcast MAP Iron County, UT, Koenig et al. 2009

N fertilization of grass

- If a field < 75% legumes will be rotated to a different crop soon, consider N for immediate gain
- If need to buy hay or rent pasture, likely less costly to fertilize
- N can increase yields for many years (surprising to me!)
- A single 50 lb N/acre on dryland grass was more economical over 5-yrs than a single 100 lb N/acre

Conclusions

- Nitrogen, phosphorus, potassium, and sulfur can all produce growth responses in forage
- Economic benefits often aren't realized in the first year (so don't base decisions on 1 yr studies!)
- Soil testing is essential for determining fertilizer needs

Download these Extension Bulletins

leveloping Fertilizer

http://landresources.montana.edu/soilfertility/publications.html

http://landresources.montana.edu/soilfertility/soilscoop.html

Photo by Ann Ronning

Thank you! Questions?

Future sessions Feb 10: Sustainable Nutrient Mgt Feb 17: Cover crops

This presentation and more information on soil fertility is available at http://landresources.montana.edu/soilfertility