Quantification of NH₃ volatilization from urea applied to cold soils in Montana

Richard Engel, Ph.D. Dept. of Land Resources and Environmental Sci. Montana State University

MONTANA AGRICULTURAL EXPERIMENT STATION

AGRICULTURE

NORTHERN AGRICULTURAL RESEARCH CENTER

Cooperator: Jeff Whitmus, Research Assistant

Urea reactions in the soil

• $(NH_4)_2CO_3$ rapidly dissociates to form NH_4^+ and CO_3^{-2}

 $CO_3^{-2} + H_2O \longrightarrow HCO_3^{-1} + OH^{-1}$

pH 1 2.5 to 3.5 units

Urea reactions

hydrolysis can lead to large increases in pH around fertilizer prill

🗸 NH4⁺ + OH⁻

 $NH_{3(g)} + H_2O$

Urea & volatilization – previous work

- Iot of work published
- factors influencing losses are well-known: e.g. soil moisture, CEC, temperature, pH

Big question How much are we losing ?

Background - Montana fertilizer urea use

- Surface broadcast applications are common practice particularly in dryland winter wheat systems
- Iate-fall, winter, early spring cold soils
- The potential for ammonia loss has long been acknowledged from this practice, but is this a problem in our State?

Project objectives

- Quantify ammonia volatilization losses for spring, fall (early,late) and winter applications of urea ?
 - How do we mitigate losses?
 - e.g. enhanced urea products, NBPT coated urea (Agrotain)
 - e.g. timing & incorporation with air-seeders

NBPT = n-(n-butyl) thiophosphoric triamide

- urease inhibitor
- allows more time for urea to diffuse away from point of application so soil pH is moderated

.... or rainfall events so urea is leached below the soil surface

Any questions ?

Method – integrated horizontal flux

- micrometeorological preferred approach for <u>quantifying</u> gas losses
- does not disturb the soil-atmosphere environment
- moderate size plots (~0.3 acre)
- continuous measurement of NH3_(g)loss over time

Method – circular plots (20 m) urea-N rate - 90 lbs/acre urea + Agrotain Agrotain rate (4 quart/ton) large unfertilized buffer areas around plots required ! background o, co ~ 20 m + urea

Methods – masts & shuttles (traps for NH_{3(g)})

Method - shuttles

 traps for collecting ammonia, idea & design developed in Australia (Leuning et al., 1985. Atmos. Environ)

Methods - shuttles

 traps for collecting ammonia, idea & design developed in Australia (Leuning et al., 1985. Atmos. Environ)

rotate on pivot & face into wind

Method-continuous measurement

Spent shuttles exchanged with recharged shuttles every week

How are NH_{3(g)} losses quantified?

Key points

- NH_{3(g)} trapped in shuttles eluted in lab & quantified
- horizontal flux calc. effective shuttle sampling area is known via wind tunnel tests (Leuning et al., 1985)
- height vs. horizontal flux diagrams (treated area)
- background NH₃ (mast placed in untreated area)
- known fetch distance (20 m.)

net area + fetch distance

meastarecontofiteplanes

Any questions ?

Kaercher farm site - background

- 10 miles west of Havre, Hill County
- Phillips-Elloam silt loam
- ▶ pH 6.0
- 3 gas sampling campaigns 8 wks
- no till winter wheat

Kaercher site - Spring 2009 – Campaign #5

Fertilized applied – March 26 "light snow on soil surface & air-temp. 21 F"

soil surface with fertilizer prills beginning to dissolve

Kaercher site – Ammonia losses - #5 25 **Precipitation** □ urea (39.9%) 20 no rain 0-2 wks Percentage of N lost urea + Agrotain (18.1%) 1.54" 2-8 wks 15 Soil temp (1 cm) = 34.3 F 10 Air temp. = 33.1 F Soil temp (1 cm) = 38.5 F 5 Air temp. = 38.7 F 0 2 3 4 5 6 7 8 1

Weeks post-fertilization

Peterson farm site - background

- > 28 miles NW of Havre, Hill County
- Telstad-Joplin loam
- pH 5.5
- 2 gas sampling campaigns 8 wk
- no till winter wheat

Peterson site - Spring 2009 - Campaign #4

Fertilized applied – March 25 "light snow & air-temp. 18 F"

soil surface frozen 30 F

Peterson site - Spring 2009 – Campaign #4

Peterson site - Spring 2009 – Campaign #4

Soil urea analysis

- hydrolysis occurs more slowly in cold soils
- 3 wks before urea is gone

•

Peterson site - Fall 2008 - Campaign #3

November 14 - fertilization date surface damp from melting snow

•

Peterson site - Fall 2008 - Campaign #3

Peterson site - Fall 2008 - Campaign #3

Precipitation – trace amounts over first 3 wks

Dec 4th - 3 wks post-fertilization

December 18th ... winter arrived!

Urea-N volatilization loss summary†

Campaign	Cooperator site	Fertilization date		Urea	Agrotain
					%
1	Kaercher	2008	April 3	8.4	4.4
2	Kaercher	2008	Oct. 9	3.1	1.4
3	Peterson	2008	Nov. 14	31.5	4.0
4	Peterson	2009	March 25	35.6	18.0
5	Kaercher	2009	March 26	39.9	18.1
				23.7	9.2

+ percentage of applied N lost as $NH_{3(g)}$

Kaercher site (Campaign #2) - low emission

- October 9, 2008 application, air-temp. 45 F
- dry soil & no rain for 24 day
- Nov. 2-5 = 0.98" ppt.

1 wk post-fertilization

Agrotain economics

- assuming urea costs \$ 380/ton
- Agrotain adds ~\$55/ton urea (4 quart rate) \$435

N losses or differential between urea and Agrotain would need to be ~14.5%

Urea-N volatilization loss summary†

Campaign	Cooperator site	Fertilization date		Urea	Agrotain	
					%	
1	Kaercher	2008	April 3	8.4	4.4	
2	Kaercher	2008	Oct. 9	3.1	1.4	
3	Peterson	2008	Nov. 14	31.5	4.0	
4	Peterson	2009	March 25	35.6	18.0	
5	Kaercher	2009	March 26	39.9	18.1	
				23.7	9.2	

+ percentage of applied N lost as $NH_{3(g)}$

Summary

- significant NH_{3(g)} losses (up to 40% of applied N) from surface applied urea can occur even though soil temperatures are cold!
- soil moisture conditions at surface that result in dissolution of urea granules (i.e. prolonged damp) without rain promote high NH_{3(g)} losses.
- more common to find these conditions in semi-arid Northern Great Plains during the late fall or early spring.
- \checkmark Agrotain control = 60% reduction in NH_{3(g)}

Future plans

- third site this fall (clay loam)
- additional gas sampling campaigns (fall, winter, early spring)
- complementary study N source comparisons (urea, sodium nitrate) – paired plots & control

Where does the volatilized ammonia go?

http://landresources.montana.edu/ureavolatilization/

